International Workshop on Oscillations, Transients and Fluctuations in Complex Networks (OTFCN)

July 1–3, 2019

Print

Event date: 7/1/2019 - 7/3/2019 Export event

Networks pervade all areas in nature and technology, from statistical physics over engineering to biology, and from small to large scales. Complex networks are omnipresent and play a vital role in in our every-day lives, coordinating complex interactions on the level of cells, organisms and of society. Interacting units in such networks are for instance wind turbine generators, neurons, pacemaker cells in the heart, all of which obey dynamic behaviors such as oscillations. When connected in a network, these units may exhibit a collective dynamics which may serve functions such as information processing in the brain or robust delivery of power in the electric grid.

Previous research yielded many valuable insights into the significance of network structures in our every-day biological and technological life; but today, researchers are about to face and tackle new challenges: to function properly, systems in biology and technology must often operate in a non-steady, out-of-equilibrium state; in fact, they are constantly subject to varying levels of (stochastic) fluctuations and heterogeneities which may lead to non-uniform dynamic behaviors within the network. However, uniform (or non-uniform) behavior on a large-scale may be either undesired or preferable, depending on the context. For instance, if all neurons in our brain entrain to the same rhythmic activity, the resulting epileptic seizure compromises normal brain function; conversely, generators and consumers in the power grid need to stay (uniformly) synchronized to maintain optimal power transmission and to avoid costly power outages (black-out)

Thus, pressing questions manifest themselves, including: how do fluctuations or transients spread through the network and affect its dynamics, potentially destabilizing the system? On the other hand, how can the network be controlled to maintain and serve its function? Can we quantify fundamental properties such as the dimensionality of the network and reduce apparently large complex systems to smaller systems that are simpler to analyze and understand? Such questions are not merely of theoretical interest; but they bear tremendous significance to understanding the proper operation of novel smart networks we design (traffic and power networks), the function of the brain, or the complex biomic network in our human body. Clearly, we need to get a better understanding of such systems if we are to tackle next-generation challenges regarding engineering infrastructures or disease.

Our interdisciplinary workshop gathers researchers from fields lying at the boundary of biology, technology, physics and mathematics. The workshop aims at discussing the state-of the-art and emerging problems concerning dynamic interactions in complex dynamic networks, such as power grid dynamics, transport networks, brain/neural dynamics, systems biology from cell to body level, and the mathematical/physical theory of oscillation and network dynamics.

There is limited availability for contributed talks, for which titles and abstracts need to be submitted latest 14 April 2019. There also will be an opportunity to present posters.

Registration Deadline is 1 May 2019

For further details, please see the OTFCN Conference Website: http://eam.webhop.net/index_OTFCN.php5

Speakers include:

  • Andreas Daffertshofer, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Netherlands
  • Marius Yamakou, Max Planck Institute for Mathematics in Sciences, Leipzig, Germany
  • Alexey Ustinov, Physikalisches Institut, Karlsruhe Institute of Technology, Germany
  • Christian Bick, Department of Mathematics, University of Exeter, United Kingdom
  • Camille Poignard, Department of Mathematics, University of Exeter, United Kingdom
  • Marc Timme, TU Dresden, Germany (to be confirmed)
  • Elisenda Feliu, Department of Mathematics, Copenhagen University, Denmark
  • Peter Ditlevsen, Niels Bohr Institute, Copenhagen University, Denmark
  • Kim Sneppen, Niels Bohr Institute, Copenhagen University, Denmark
  • Namiko Mitarai, Niels Bohr Institute, Copenhagen University, Denmark
  • Niels Grønbech-Jensen, Department of Mechanical and Aerospace Engineering & Department of Mathematics, UC Davis, USA
  • Sandeep Krishna, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India (to be confirmed)
  • Johnny Ottesen, Group for Mathematical Health and Disease Modeling, Dept. of Science, Roskilde University, Denmark (to be confirmed)
  • Frank Hellmann, Potsdam Institute for Climate Impact Research, Potsdam, Germany (to be confirmed)

Conference organizers:

LocationCopenhagen, Denmark
StartDate7/1/2019
ConferenceDatesJuly 1–3, 2019
Tags:

Please login or register to post comments.

Name:
Email:
Subject:
Message:
x