
Short Developer's Reference for COCO
Frank Schilder, Department of Mathematics, DTU, Denmark

Harry Dankowicz Department of Mechanical Sciences and Engineering, UIUC, USA

22. October 2014

Table of Contents
1 Running a Continuation..2

1.1 COCO Function Reference...3
2 Defining a Continuation Problem...5

2.1 Adding a Zero Problem...5
2.2 Defining Continuation Parameters...6
2.3 Adding Test Functions and Events..6
2.4 Customizing Output..7

 The signal 'bddat'...8
 The signals 'cont_print' and 'corr_print'..9
 The signal 'save_full'...9

3 Developing COCO-compatible Toolboxes...10
3.1 Constructor functions..10
3.2 Parser Functions...10

 Starting at an Initial Point...11
 Restarting at a Saved Solution Point...11
 Branch-Switching at a Bifurcation Point..12

3.3 Defining Toolbox Properties...15
 Properties of the Continuation Algorithm...16
 Properties of the Correction Algorithm...17

4 Functions for post-processing..17
5 Utility Functions...18

5.1 Toolbox Data Structures with Shared Fields..18
5.2 Numerical Differentiation...19

1

1 Running a Continuation

A continuation problem consists of at least one zero problem and, usually, the definition of at least one
active continuation parameter. As an example, consider the zero problem

F u=0, F u :=u1
2
u2

2
−1, F :ℝ2

ℝ ,

defining a circle with radius 1 in the u1 , u2 - plane. We can compute this circle using continuation
by treating one of the components of the vector u as an active continuation parameter. In a first step,
we must add the function F as a zero problem. In the second step, we define u2 as the active
continuation parameter. A COCO-compatible Matlab-encoding for implementing the function F is

function [data y] = circle(opts, data, u)
 y = u(1)^2 + u(2)^2 - 1;
end

Here, y is the function value and u is a vector of continuation variables. All other formal parameters
must be present, but will be ignored for now. Detailed explanations are given in Section 2.1.

We construct an empty continuation problem, associate the function circle with a zero problem, and
identify the component u(2) with the initially inactive continuation parameter 'mu' by executing the
three commands

prob = coco_prob();
prob = coco_add_func(prob, 'circle', @circle, [], 'zero', 'u0', [1;0]);
prob = coco_add_pars(prob, '', 2, 'mu');

COCO stores all information about the continuation problem in the continuation problem structure
prob. The core constructor coco_prob initializes an empty continuation problem structure. This
structure is typically the first argument when calling a function from the toolbox COCO.

After defining our continuation problem, we run the continuation by executing the command

bd = coco(prob, '1', [], 'mu', [-2 2]);

which activates the continuation parameter 'mu' on the interval [-2,2]. This produces the screen
output

 STEP DAMPING NORMS COMPUTATION TIMES
 IT SIT GAMMA ||d|| ||f|| ||U|| F(x) DF(x) SOLVE
 0 0.00e+00 1.00e+00 0.0 0.0 0.0

 STEP TIME ||U|| LABEL TYPE mu
 0 00:00:00 1.0000e+00 1 EP 0.0000e+00
 10 00:00:02 1.3095e+00 2 -8.4540e-01
 19 00:00:03 1.4142e+00 3 FP -1.0000e+00
 20 00:00:03 1.4114e+00 4 -9.9597e-01
 30 00:00:04 1.2453e+00 5 -7.4212e-01
 40 00:00:04 1.0131e+00 6 1.6224e-01

2

 50 00:00:05 1.3527e+00 7 9.1098e-01
 57 00:00:06 1.4142e+00 8 FP 1.0000e+00
 60 00:00:06 1.4010e+00 9 9.8126e-01
 70 00:00:07 1.1855e+00 10 6.3674e-01
 80 00:00:08 1.0636e+00 11 -3.6223e-01
 90 00:00:09 1.3830e+00 12 -9.5533e-01
 95 00:00:09 1.4142e+00 13 FP -1.0000e+00
 100 00:00:10 1.3829e+00 14 EP -9.5525e-01

 STEP TIME ||U|| LABEL TYPE mu
 0 00:00:10 1.0000e+00 15 EP 0.0000e+00
 10 00:00:11 1.3095e+00 16 8.4540e-01
 19 00:00:12 1.4142e+00 17 FP 1.0000e+00
 20 00:00:12 1.4114e+00 18 9.9597e-01
 30 00:00:13 1.2453e+00 19 7.4212e-01
 40 00:00:14 1.0131e+00 20 -1.6224e-01
 50 00:00:15 1.3527e+00 21 -9.1098e-01
 57 00:00:16 1.4142e+00 22 FP -1.0000e+00
 60 00:00:16 1.4010e+00 23 -9.8126e-01
 70 00:00:18 1.1855e+00 24 -6.3674e-01
 80 00:00:19 1.0636e+00 25 3.6223e-01
 90 00:00:20 1.3830e+00 26 9.5533e-01
 95 00:00:20 1.4142e+00 27 FP 1.0000e+00
 100 00:00:21 1.3829e+00 28 EP 9.5525e-01

After running the continuation we can plot a simple bifurcation diagram by executing the commands

u = coco_bd_col(bd, '||U||');
mu = coco_bd_col(bd, 'mu');
plot(mu, u)

Note that this does not plot the circle, but rather the graph of the norm of the solution vector,
parametrized by the continuation parameter 'mu', as these are included by default in the array of
bifurcation data returned by the coco command.

1.1 COCO Function Reference

The Matlab function for running a continuation with the toolbox COCO is coco. For one-dimensional
solution manifolds, this function has two forms of calling syntax:

bd = coco(prob, run, [], PARS, PInt);

and

bd = coco(prob, run, TBNM, FPT, TPT, TBARGS, PARS, PInt);

In the first form, the continuation problem is created manually by the user and stored, in advance of
continuation, in the continuation problem structure prob. In the second form, a COCO-compatible
toolbox appends the continuation problem to the continuation problem structure stored in prob. The

3

arguments are

bd The entry-point function coco returns a cell array containing the bifurcation data. The
contents of bd can be modified; see Section 2.4. The functions coco_bd_col,
coco_bd_labs and coco_bd_val provide an interface to access data in the cell array; see
Section 4.

prob A continuation problem structure is typically the first argument to any of COCO's
toolbox functions.

run Run name or run identifier. A unique, user-defined run name or run identifier must be
associated with the computation to be performed. This can either be a Matlab string, or a
cell array of Matlab strings. A common choice is '1', '2', ...

coco saves the bifurcation data and solution data in the sub-directory 'data' of the
current directory. Unique run names organize this data for later access, for example,
plotting. The run identifier is used to construct the name of a sub-directory such that
data computed in a specific run does not overwrite data from another run. For example,
setting run='1' will save all data to the sub-directory '1' of 'data'. Setting
run={'1','a'} on the other hand will save all data to the sub-directory 'a' of
'data/1', that is, one can think of run={'1','a'} as being sub-run 'a' of run '1'.
Functions for reading bifurcation data from disk and for post-processing bifurcation data
are described in Section 4.

PARS Continuation parameters. This is either a Matlab string or a cell array of Matlab strings
corresponding to labels for a subset of the continuation parameters. The values of these
parameters are included in the screen output. Parameters are activated in the order listed
to the extent necessary to ensure that the number of continuation variables and active
continuation parameters exceeds the dimension of the zero problem by 1. The inclusion
of additional parameters is called parameter over-specification and is useful, for
example, to output values of test functions during a continuation.

PInt Parameter Intervals. This defines the computational domain in terms of a set of
intervals within which the corresponding continuation parameter may vary. PInt is a
1x2 vector or a cell array of 1x2 vectors. The empty interval [] is identical to [-inf,
inf]. Trailing instances of the empty interval may be omitted.

TBNM Toolbox Name. TBNM is a Matlab string representing the name of a COCO-compatible
toolbox. COCO uses TBNM to construct the name of a so-called parser function; see
Section 3.2.

FPT From-Point-Type. The Matlab string FPT contains an acronym for the type of initial
solution. COCO uses FPT to construct the name of a parser function; see Section 3.2.

TPT To-Point-Type. The Matlab string TPT contains an acronym for the type of solution that
should be continued. COCO uses TPT to construct the name of a parser function; see
Section 3.2.

TBARGS Toolbox Arguments. The input argument TBARGS represents the sequence of additional
input arguments that are passed to the parser function of the toolbox TBNM. The list of
accepted arguments is defined by the parser function.

4

2 Defining a Continuation Problem

2.1 Adding a Zero Problem

A zero problem is a function F u=0, F :ℝm
ℝ

n , where mn. A zero problem is defined as a
Matlab function of the COCO-compatible form

function [data y] = FunctionName(prob, data, u)
y = FunctionBody(u);
end

By default, derivatives are computed using finite differences. While this is sufficient for simple zero
problems, it is usually too slow or too inaccurate for complex zero problems. The COCO-compatible
form of a Matlab function for defining the derivative of a zero problem explicitly is

function [data J] = FunctionName_DFDU(prob, data, u)
J = FunctionBody(u);
end

The formal parameters of both functions are

data Structure with function data or toolbox data. This structure is defined when calling
coco_add_func and stores information about the continuation problem, for example,
information about the contents of u. The function has read-write access to the contents of
data.

y n-dimensional vector with function values y=F u∈ℝ
n .

J
n-by-m Jacobian matrix of the function: J =

∂ F
∂ u

u∈ℝ
n×m .

prob A continuation problem structure. The function has read-access to the contents of prob.
This argument is only required in very advanced applications and should be ignored in
most common situations.

u m-dimensional vector of continuation variables.

A zero problem is added to a continuation problem using the function coco_add_func. The general
syntax is

prob = coco_add_func(prob, FID, @func, [@func_DFDU,] data, ...
 'zero', 'u0', u0);

prob A continuation problem structure.

FID A unique function identifier given by a Matlab string. This is useful for debugging
purposes and advanced applications.

@func A function handle to the encoding of a zero problem as defined above.

5

@func_DFDU A function handle to the encoding of the derivative of the zero problem. This
argument is optional. If a derivative is not specified explicitly, numerical
differentiation is used. This is acceptable for simple algorithms, but will be too
inaccurate or too slow for more advanced applications.

data Initial content for the function data structure. In advanced applications this may
change during execution.

u0 An initial guess for the vector u such that F u≈0.

2.2 Defining Continuation Parameters

Typically, part of the vector u of a zero problem will correspond to parameters of the problem. The
function coco_add_pars allows to define which components of u should be treated as parameters for
the purpose of continuation. Typically, one needs to define m−n≥1 continuation parameters. The
general syntax is

prob = coco_add_pars(prob, '', PIdx, PNM);

prob A continuation problem structure.

PIdx Parameter indices. Set of integer indices such that u(PIdx) corresponds to the set of
problem parameters.

PNM Parameter names. A string or a cell array of strings assigning short descriptive names to
each associated continuation parameter.

2.3 Adding Test Functions and Events

Detecting and locating special points along a solution curve is called event handling. To use event
handling one has to define a monitor or test function, add this function to the continuation problem, and
assign events to the parameters associated with the monitor function. A COCO-compatible encoding of
a monitor function has exactly the same form as that associated with a zero problem:

function [data y] = FunctionName(prob, data, u)
y = FunctionBody(u);
end

data Structure with sfunction data. This structure is defined when calling coco_add_func and
stores information about a continuation problem, for example, information about the
contents of u. The function has read-write access to the contents of data.

y Vector with function values.

prob A continuation problem structure. The function has read-access to the content of prob.
This argument is only required in very advanced applications and should be ignored in
most common situations.

u Vector of continuation variables.

The syntax for adding a test function is different from the syntax for adding a zero problem:
prob = coco_add_func(prob, FID, @func, data, EVType, PNM);

6

prob A continuation problem structure.

FID A unique function identifier given by a Matlab string. This is useful for debugging
purposes and advanced applications.

@func A function handle to a COCO-compatible encoding of a monitor function as defined
above.

data The function data structure.

EVType The type of event associated with this monitor function. In most applications EVType can
be set to either 'regular' (events are regular solution points) or 'singular' (events are
singular solution points).

PNM Parameter names. A string or a cell array of strings assigning short descriptive labels to
the continuation parameters associated with each component of the vector returned by
the monitor function. These names can later be used to assign an event to a specific
monitor function or for additional output; see parameter over-specification on Page 4.

The function coco_add_event allows to assign an event to any parameter associated with a monitor
function or defined with coco_add_pars. The general syntax is

prob = coco_add_event(prob, EVLab, [EVType,] PNM, EVVals);

prob A continuation problem structure.

EVLab Event label (point type). A short (2-4 characters) Matlab string providing a descriptive
label to identify an event in the bifurcation data, for example, 'LP' for limit point.

EVType Event type. Optional argument describing the type of an event. Typically, events are
bifurcation points, which have the default event type 'special point'. It is also possible
to use event handling to define computational boundaries, in which case one has to use
EVType='boundary'. Continuation will stop whenever such a boundary-event is detected,
while it will continue after detecting special points.

PNM Name of parameter the event will be assigned to. This is a Matlab string.

EVVals A list of event values. Each crossing of the value of a monitor function with an event
surface associated with an event value will be detected and located. Typically, one uses
EVVals=0 (detect zero crossings only).

2.4 Customizing Output

COCO uses a signal-slot mechanism to allow the modification of output to the screen, the bifurcation
data and the disk. A slot function is connected to a signal with coco_add_slot.

prob = coco_add_slot(prob, SFID, @func, data, Signal);

prob A continuation problem structure.

SFID A slot function identifier given by a Matlab string. The slot function identifier must be
unique for each signal. This is useful for debugging purposes and advanced
applications.

7

@func A function handle to a signal-compatible encoding of a slot function as defined below.

data The slot function data structure.

Signal The name of the signal. The most commonly used signals are 'bddat', 'cont_print',
'corr_print', and 'save_full'; see details below. An important, but less commonly
used signal is 'update'.

A slot function has the general form

function [data [res ...]] = slot_func(prob, data, ...)
Function Body
end

data The function data structure.

res Optional output arguments. Whether or not a slot function should return any output is
defined by the signal the function is connected to; see below.

prob A continuation problem structure.

... Additional input/output arguments depending on the signal the slot function is
connected to; see below.

The signal 'bddat'

This signal is used to add data to the cell array bd returned by a call to coco. The form of a 'bddat'-
slot function must be

function [data res] = bddat_slot_func(prob, data, command, varargin)
switch command
 case 'init'
 res = { ListOfNames };
 case 'data'
 chart = varargin{1};
 res = { ListOfValues(chart) };
end
end

chart The solution chart contains information about the current solution point. The most
useful fields are the full solution vector chart.x, the point type chart.pt_type and
the solution label chart.lab. The point type and the solution label are printed on
screen in columns TYPE and LABEL.

ListOfNames This list of names will be stored as column headers in the first row of the bifurcation
data cell array and allow easy access to the data associated with these columns using
coco_bd_col; see below. The number of names must match the number of values.
Note that a value may be a vector or matrix.

8

ListOfValues This list of values will be stored in the bifurcation data cell array. The number of
values must match the number of names. Note that a value may be a vector or a
matrix.

The signals 'cont_print' and 'corr_print'

These signals are used to print additional output on screen. The signal 'cont_print' adds output
during continuation, and the signal 'corr_print' adds output during the correction. The form of either
'*_print'-slot function must be

function data = print_slot_func(prob, data, command, LogLevel, varargin)
switch command
 case 'init'
 coco_print(prob, LogLevel, format1, Headline);
 case 'data'
 x = varargin{1}.x;
 coco_print(prob, LogLevel, format2, Dataline(x));
end
end

format1 An fprintf format string.

Headline A descriptive headline for the additional output.

x The full solution vector.

format2 An fprintf format string.

Dataline The additional output.

The signal 'save_full'

Since the continuation algorithm will save a solution structure containing extensive information about
the solution point for each labelled solution, it is usually only necessary to save a toolbox data structure
in addition to this solution structure. COCO provides the pre-defined slot function coco_save_data to
simplify this common task:

prob = coco_add_slot(prob, SFID, @coco_save_data, data, 'save_full');

This will save the function data structure together with the solution. It is customary to use the function
identifier FID of a zero problem also as the slot function identifier SFID for saving its function data,
because coco_read_solution will then automatically retrieve the function data together with the
solution data associated to the same identifier. To restore the solution structure and function data use
coco_read_solution as in

[data chart] = coco_read_solution([ID], run, lab);

ID Slot function identifier. Optional Matlab string identifier used when adding the slot function.
If omitted, return the entire solution. If present, return the solution and function data
associated with the identifier ID.

9

run Run identifier of the run during which the solution was computed, given by a string or a cell
array of strings.

lab Integer label for the corresponding solution.

3 Developing COCO-compatible Toolboxes

A COCO-compatible toolbox consists of a set of constructor and parser functions. Constructor
functions typically

• assemble the function data structure of the toolbox,
• set-up a zero problem,
• define the set of continuation parameters,
• add relevant test functions and events, and
• add useful information to the screen output, the bifurcation data, and solution files.

A constructor function should always add the toolbox data structure to solution files; see below. A
parser function typically

• parses the arguments provided by the user and
• calls an appropriate constructor function.

Parser functions are selected by the function coco according to the three input arguments TBNM, FPT,
TPT; see Section 1.1. This supports an easy and systematic selection of a parser function depending on
the task to perform, for example, start a computation from a user-provided initial point, or switch
branches at a bifurcation point. Each parser function can define its own set of arguments that a user
needs to specify when calling coco.

3.1 Constructor functions

A toolbox usually has at least one constructor function. The general form of a constructor function is

function prob = TBXName_construct(prob, ARGS)
FunctionBody
end

TBXName The name of the toolbox. A usual naming convention for constructor functions is toolbox
name + '_construct' or toolbox name + '_create'.

prob A continuation problem structure.

ARGS Any number of arguments required to construct a toolbox instance.

3.2 Parser Functions

A toolbox usually has a collection of parser functions. Most commonly, parser functions are available
for

• starting at an initial point provided by the user,
• re-starting at a solution point from a previous continuation run, and
• branch-switching at bifurcation points.

10

The general form of a parser function is

function prob = TBXName_FPT2TPT(prob, oid, varargin)
str = coco_stream(varargin);
FunctionBody(str);
end

TBXName The name of the toolbox.

FPT An acronym for the type of initial solution to start from (From-Point-Type).

TPT An acronym for the type of solution to continue (To-Point-Type).

prob A continuation problem structure.

oid An object identifier. The object identifier should be used with the function coco_get_id
to form identifiers. For example, the toolbox identifier is defined to be
coco_get_id(oid, TBXName). This is typically used as the function identifier for the
zero problem and the 'save_full'-slot function used to save the function data of the
zero problem.

varargin Additional arguments from the call to coco that are passed to the parser function. This
formal parameter must always be present to allow surplus arguments being passed to a
parser. These additional arguments will usually include parameters for the actual
continuation algorithm and are to be ignored by a parser. It is important that any parser
function converts varargin to a coco_stream object and accesses arguments only
through this object. To simplify input parsing, COCO provides the function coco_parse.

Starting at an Initial Point

A simple implementation of a parser function has no optional arguments and simply forwards its
arguments to a toolbox constructor:

function prob = parser(prob, oid, varargin)
str = coco_stream(varargin{:});
[ARG1 ... ARGN] = str.get();
prob = constructor(opts, ARG1, ..., ARGN);
end

Restarting at a Saved Solution Point

A simple implementation of a restart parser loads the data of a solution computed in a previous run
from disk, construct all arguments required by the toolbox constructor and then calls the toolbox
constructor. A solution from a previous continuation run is uniquely identified by a run and a label. The
run is called restart run and the label restart label. The run is usually just the string that a user passed
to the function coco and the label is an integer, which was printed on screen as well as stored in the
bifurcation data returned by coco. The basic algorithm is

11

function prob = parser(prob, oid, varargin)
str = coco_stream(varargin{:});
[rrun rlab ARG1 ... ARGM] = str.get();
tbid = coco_get_id(oid, TBXName);
[data sol] = coco_read_solution(tbid, rrun, rlab);
[ARG1, ..., ARGN] = ReconstructArgsForConstructor(data, sol, ARG1, ..., ARGM);
prob = constructor(prob, ARG1, ..., ARGN);
end

prob A continuation problem structure.

oid An object identifier.

rrun The restart run identifier; typically, a Matlab string.

rlab The integer restart label.

tbid A unique toolbox identifier.

Branch-Switching at a Bifurcation Point

Branch-switching at a bifurcation point is almost identical to starting at an initial guess, if the
bifurcation point is a regular solution point. All that needs to be done is to compute an approximation
of a regular solution point on the new branch close to the bifurcation point. One then calls the
appropriate toolbox parser designed to compute the new branch starting at an initial guess.

Branch switching at a singular point (branch point) is more involved and, to some extent, beyond the
scope of this short reference. We illustrate the fundamentals with an example and refer to other
documentation or toolboxes for further reference. Essentially, branch switching at a branch point
requires passing an initial direction vector together with the initial solution point in the call to
coco_add_func. A vector that is suitable for use in most situations is the singular vector of the Jacobian
of the full continuation problem, which is saved by COCO's linear solver in chart data associated with
a(n approximately located) branch point.

Let us illustrate this methodology with the example of two unit circles defined by the zero-set of the
function

intersecting each other in two points. A COCO-compatible encoding of this function is

function [data y] = circles(opts, data, u)
 y = (u(1)^2 + u(2)^2 - 1)*((u(1)-1)^2 + u(2)^2 - 1);
end

and running a continuation produces the output

>> prob = coco_prob();
>> prob = coco_add_func(prob, 'circles', @circles, [], 'zero', 'u0', [1;0]);
>> prob = coco_add_pars(prob, '', [1 2], {'x' 'y'});
>> bd = coco(prob, '1', [], {'x' 'y'}, [-2 2]);

12

F u:=u1
2
u2

2
−1u1−1

2
u2

2
−1 , F :ℝ2

ℝ ,

 STEP DAMPING NORMS COMPUTATION TIMES
 IT SIT GAMMA ||d|| ||f|| ||U|| F(x) DF(x) SOLVE
 0 0.00e+00 1.41e+00 0.0 0.0 0.0

 STEP TIME ||U|| LABEL TYPE x y
 0 00:00:00 1.4142e+00 1 EP 1.0000e+00 0.0000e+00
 1 00:00:00 1.4142e+00 2 FP 1.0000e+00 -3.8061e-08
 10 00:00:01 1.4142e+00 3 6.8992e-01 -7.2389e-01
 13 00:00:01 1.4142e+00 4 BP 5.0000e-01 -8.6603e-01
 20 00:00:02 1.4142e+00 5 -5.9291e-02 -9.9824e-01
 30 00:00:03 1.4142e+00 6 -7.7075e-01 -6.3713e-01
 39 00:00:03 1.4142e+00 7 FP -1.0000e+00 3.9613e-06
 40 00:00:04 1.4142e+00 8 -9.9157e-01 1.2956e-01
 50 00:00:04 1.4142e+00 9 -5.8117e-01 8.1378e-01
 60 00:00:05 1.4142e+00 10 1.9919e-01 9.7996e-01
 64 00:00:06 1.4142e+00 11 BP 5.0000e-01 8.6603e-01
 70 00:00:06 1.4142e+00 12 8.5275e-01 5.2232e-01
 77 00:00:07 1.4142e+00 13 FP 1.0000e+00 8.0110e-06
 80 00:00:07 1.4142e+00 14 9.6347e-01 -2.6782e-01
 90 00:00:08 1.4142e+00 15 BP 5.0000e-01 -8.6603e-01
 90 00:00:08 1.4142e+00 16 4.6086e-01 -8.8747e-01
 100 00:00:09 1.4142e+00 17 EP -3.3512e-01 -9.4218e-01

 STEP TIME ||U|| LABEL TYPE x y
 0 00:00:09 1.4142e+00 18 EP 1.0000e+00 0.0000e+00
 10 00:00:10 1.4142e+00 19 6.8992e-01 7.2389e-01
 13 00:00:11 1.4142e+00 20 BP 5.0000e-01 8.6603e-01
 20 00:00:11 1.4142e+00 21 -5.9291e-02 9.9824e-01
 30 00:00:12 1.4142e+00 22 -7.7075e-01 6.3713e-01
 39 00:00:13 1.4142e+00 23 FP -1.0000e+00 -3.9613e-06
 40 00:00:13 1.4142e+00 24 -9.9157e-01 -1.2956e-01
 50 00:00:14 1.4142e+00 25 -5.8117e-01 -8.1378e-01
 60 00:00:15 1.4142e+00 26 1.9919e-01 -9.7996e-01
 64 00:00:16 1.4142e+00 27 BP 5.0000e-01 -8.6603e-01
 70 00:00:16 1.4142e+00 28 8.5275e-01 -5.2232e-01
 77 00:00:17 1.4142e+00 29 FP 1.0000e+00 -8.0110e-06
 80 00:00:17 1.4142e+00 30 9.6347e-01 2.6782e-01
 90 00:00:18 1.4142e+00 31 BP 5.0000e-01 8.6603e-01
 90 00:00:18 1.4142e+00 32 4.6086e-01 8.8747e-01
 100 00:00:19 1.4142e+00 33 EP -3.3512e-01 9.4218e-01

The intersection points are detected as branch points. Inspecting the solution and chart data of the
branch point with label 4 reveals the tangent vector as well as the singular vector:

>> [data chart uidx] = coco_read_solution('circles', '1', 4, ...
'data', 'chart', 'uidx');
>> chart.x

13

ans =

 0.5000
 -0.8660

>> chart.t

ans =

 -0.6124
 -0.3535

>> cd = coco_get_chart_data(chart, 'lsol');
>> cd.v(uidx)

ans =

 0.3976
 -0.5847

Note that the singular vector cd.v(uidx) is not tangent to the intersecting circle. We achieve a
continuation of the intersecting circle with the sequence of commands (continued from above)

>> prob = coco_prob();
>> prob = coco_add_func(prob, 'circles', @circles, [], 'zero', ...
'u0', chart.x, 't0', cd.v(uidx));
>> prob = coco_add_pars(prob, '', [1 2], {'x' 'y'});
>> prob = coco_set(prob, 'cont', 'NullItMX', 1);
>> bd = coco(prob, '2', [], {'x' 'y'}, [-2 2]);

 STEP TIME ||U|| LABEL TYPE x y
 0 00:00:00 1.4142e+00 1 EP 5.0000e-01 -8.6603e-01
 1 00:00:00 1.4142e+00 2 BP 5.0000e-01 -8.6603e-01
 10 00:00:01 4.2737e-01 3 4.5661e-02 -2.9873e-01
 14 00:00:01 1.1287e-05 4 FP -1.7708e-07 -7.9790e-06
 20 00:00:02 7.2350e-01 5 1.3086e-01 4.9457e-01
 27 00:00:02 1.4142e+00 6 BP 5.0000e-01 8.6603e-01
 30 00:00:03 1.7542e+00 7 7.6934e-01 9.7303e-01
 40 00:00:04 2.4937e+00 8 1.5547e+00 8.3208e-01
 50 00:00:05 2.8191e+00 9 1.9869e+00 1.6144e-01
 52 00:00:05 2.8284e+00 10 FP 2.0000e+00 2.1660e-06
 60 00:00:06 2.6765e+00 11 1.7909e+00 -6.1197e-01
 70 00:00:06 2.0894e+00 12 1.0914e+00 -9.9581e-01
 78 00:00:07 1.4142e+00 13 BP 5.0000e-01 -8.6603e-01
 80 00:00:08 1.1554e+00 14 3.3377e-01 -7.4574e-01
 90 00:00:08 2.9626e-02 15 2.1943e-04 -2.0948e-02
 91 00:00:09 1.2708e-05 16 FP -1.4312e-07 8.9845e-06
 100 00:00:09 1.1011e+00 17 EP 3.0311e-01 7.1718e-01

14

 STEP TIME ||U|| LABEL TYPE x y
 0 00:00:10 1.4142e+00 18 EP 5.0000e-01 -8.6603e-01
 10 00:00:10 2.2647e+00 19 1.2822e+00 -9.5936e-01
 20 00:00:11 2.7526e+00 20 1.8943e+00 -4.4757e-01
 26 00:00:12 2.8284e+00 21 FP 2.0000e+00 -6.7235e-06
 30 00:00:12 2.7836e+00 22 1.9371e+00 3.4914e-01
 40 00:00:13 2.3523e+00 23 1.3834e+00 9.2360e-01
 50 00:00:14 1.5305e+00 24 5.8562e-01 9.1010e-01
 52 00:00:15 1.4142e+00 25 BP 5.0000e-01 8.6603e-01
 60 00:00:15 4.5458e-01 26 5.1661e-02 3.1726e-01
 64 00:00:16 7.2730e-06 27 FP -1.5190e-08 5.1428e-06
 70 00:00:16 6.9683e-01 28 1.2139e-01 -4.7755e-01
 77 00:00:17 1.4142e+00 29 BP 5.0000e-01 -8.6603e-01
 80 00:00:17 1.7325e+00 30 7.5043e-01 -9.6836e-01
 90 00:00:18 2.4806e+00 31 1.5383e+00 -8.4273e-01
 100 00:00:19 2.8168e+00 32 EP 1.9836e+00 -1.8064e-01

Note the passing of the branch point chart.x and the singular vector cd.v(uidx) in the call to
coco_add_func. We also set the toolbox property 'NullItMX' of the toolbox 'cont' to 1. This enables
the application of an algorithm for improving the initial direction to obtain a vector closer to the actual
tangent vector of the intersecting circle. See the next section for information on toolbox properties.

3.3 Defining Toolbox Properties

Toolbox properties are a user-friendly way to adapt a toolbox to a specific situation, for example, by
allowing a user to switch certain features on or off. Properties are defined using the function coco_set,
and can be accessed using the function coco_get. Toolbox properties are typically stored in a structure.
To simplify working with property structures, COCO provides the function coco_merge to merge two
property structures. The general syntax of a call to coco_set is

prob = coco_set(prob, TBXName, PropName, PropValue, ...);

prob A continuation problem structure.

TBXName Name or an acronym of the name of the toolbox, also referred to as a class name.
Pick a unique and somewhat descriptive name to avoid name clashes. This argument
is a string.

PropName Name of the property to set. This argument is a string.

PropValue Value to assign to the property. This can be any Matlab data type.

... Further pairs of PropName and PropValue for multiple assignments in one line.

The function coco_get extracts any toolbox properties defined with coco_set from COCO's options
structure.

tb_opts = coco_get(prob, TBXName);

15

tb_opts A structure containing all fields associated with the toolbox TBXName that were set with
the function coco_set. If no properties were set, coco_get returns an empty structure.

prob A continuation problem structure.

TBXName Name or an acronym of the name of the toolbox used when calling coco_set. This name
is also referred to as a class name.

To merge two property structures, for example, the properties set with coco_set and a structure with
default values, use coco_merge.

props = coco_merge(props1, props2);

Merge the two property structures props1 and props2 recursively. The resulting structure props
will have the union of the fields of the structures props1 and props2. The merge operation
gives precedence to fields in props2, that is, a field present in props2 will overwrite a field
with the same name in props1. The most common situation for calling coco_merge is to
overwrite settings in a structure containing default values for all toolbox properties with the
actual user settings, if present, as in

tb_opts = coco_get(prob, TBXName);
tb_opts = coco_merge(defaults, tb_opts);

Here, coco_get extracts any user settings for the toolbox with name TBXName from the
continuation problem structure. Subsequently, coco_merge merges these settings with default
settings stored in the structure defaults.

Properties of the Continuation Algorithm

Commonly used properties of the continuation algorithm, class 'cont'.

Property Default Description

h0 0.1 Initial continuation step size.

h_max 0.5 Maximal continuation step size.

h_min 0.01 Minimal continuation step size.

ItMX 100 Maximum number of continuation steps. The general form for one-
dimensional manifolds is [ItBW,ItFW], where ItFW is the number of
steps in forward and ItBW in backward direction. If only one number
is specified, ItFW and ItBW are set to the same value.

LogLevel [1 0] Controls the amount of diagnostic output on screen. The first number
affects the continuation and the second number the correction
algorithm. When set to zero, no output will be produced. Higher
levels increase the amount of information printed. For the
continuation algorithm the values 0, 1, 2 and 3, and for the correction
algorithm the values 0, 1 can be chosen.

16

NPR 10 Print and save information about the current solution point at least
every NPR continuation steps. A unique solution label will be assigned
to each printed and saved solution.

Properties of the Correction Algorithm

Commonly used properties of the correction algorithm, class 'corr'.

Property Default Description

ItMX 10 Maximum number of iterations. If the solution cannot be computed
within this number of steps, the continuation step size will be reduced
and another attempt of correction is made. This is repeated until the
minimum continuation step size is reached. If it is not possible to
compute a new solution, the continuation of the branch in this
direction will terminate. This is indicated in the bifurcation data with
the point type 'MX' (maximum number of iterations exceeded).

SubItMX 4 Maximum number of damping steps. If set to 1, the corrector becomes
the classical Newton method. Higher values result in a damped
Newton method with increasing damping. Some damping typically
improves the convergence properties of Newton's method.

TOL 1.00E-006 Convergence criterion on the norm of the Newton correction.

ResTOL 1.00E-006 Convergence criterion on the norm of the residuum.

LogLevel 1 Controls the amount of diagnostic output on screen. When set to zero,
no output will be produced.

4 Functions for post-processing

To simplify branch-switching and plotting of bifurcation diagrams COCO offers functions for post-
processing of bifurcation data and for reading bifurcation data from disk.

To read previously computed bifurcation data from disk, use

bd = coco_bd_read(run);

bd The bifurcation data as returned by coco after running a continuation with run name run.

run The run name or run identifier of the bifurcation diagram.

To extract a full column from the bifurcation data cell array, use

col = coco_bd_col(bd, Name);

col A Matlab array of values of a column in the bifurcation diagram. The coco_bd_col function
tries to concatenate all values into a numerical array and will return a cell array if this fails.

bd A bifurcation data cell array as returned by coco or coco_bd_read.

17

Name The name of the column to extract. This is a string, which must match a name in
ListOfNames as defined by the corresponding 'bddat' slot function; see Section 2.4. In
addition, all names of continuation parameters and parameters associated with monitor
functions can be used.

To extract all solution labels of corresponding to an event label (point type), use

labs = coco_bd_labs(bd, PTType);

labs A list of solution labels. This is a numerical array of integers and may be empty if no point
with label PTType was detected. These solution labels can be used for branch-switching at a
bifurcation point with label PTType, or for plotting bifurcation points in a bifurcation
diagram; see function coco_bd_val below.

bd A bifurcation data cell array as returned by coco or coco_bd_read.

PTType A string event label (point type), which must match EVLab as defined by the function
coco_add_event; see Section 2.3. The event label is printed in the column TYPE of the
bifurcation data.

The function coco_bd_val extracts a single value from a bifurcation data cell array. One can interpret
this function as accessing the content of the bifurcation data cell array in the form bd(lab,col), where
lab is an integer solution label and col is the name of a column. Another interpretation is, that
coco_bd_val is a combination of coco_bd_col and coco_bd_lab. The calling syntax is

val = coco_bd_val(bd, lab, Name);

val The value in the bifurcation data cell array in column Name of the solution with integer
label lab.

bd A bifurcation data cell array as returned by coco or coco_bd_read.

lab A solution label.

Name The name of the column. This is a string, which must match a name in ListOfNames as
defined by the corresponding 'bddat' slot function; see Section 2.4. In addition, all
names of continuation parameters and parameters associated with monitor functions can
be used.

5 Utility Functions

5.1 Toolbox Data Structures with Shared Fields

Sometimes it is necessary to allow different functions from a toolbox to modify a shared copy of the
toolbox data structure. COCO's way of making this possible is to make function data an instance of
coco_func_data. Any structure may be converted to coco_func_data and, when doing so, all fields
that were present at the time of conversion, or that will be added subsequently, are shared between
copies of this instance.

18

data = coco_func_data(data);

data On output: An instance of coco_func_data. After this conversion, the fields of data can
be accessed using Matlab's usual methods of structure field access. If one creates a copy
of data, for example, d2=data, then assignments to d2 will affect data and vice versa.
The fields data.data, data.sh, and data.pr have a special meaning and may not be
used in simple assignments.

data On input: A toolbox data structure. If data is already of type coco_func_data, noting
happens (data is returned as is).

5.2 Numerical Differentiation

For many test functions one needs to compute the derivative of a function with respect to its arguments
or parameters. COCO contains the helper functions coco_ezDFDX and coco_ezDFDP for computing
numerical approximations of derivatives. These functions are quite flexible and allow the
differentiation of functions with a variety of input and output arguments. The most common
application, however, is the differentiation of a function of the form y= f (x , p) . To compute the
Jacobian with respect to x , use

J = coco_ezDFDX('f(x,p)', @func, x, p);

J The Jacobian matrix ∂ f /∂ x .

@func Function handle to the encoding of the corresponding function. The function must return a
vector y and must have two input arguments x and p.

x,p The point at which to compute the Jacobian.

To compute Jacobian of a function with respect to p ,use

J = coco_ezDFDP('f(x,p)', @func, x, p);

J The Jacobian matrix ∂ f /∂ p .

@func Function handle to the encoding of the corresponding function. The function must return a
vector y and must have two input arguments x and p.

x,p The point at which to compute the Jacobian .

19

	1 Running a Continuation
	1.1 COCO Function Reference

	2 Defining a Continuation Problem
	2.1 Adding a Zero Problem
	2.2 Defining Continuation Parameters
	2.3 Adding Test Functions and Events
	2.4 Customizing Output
	The signal 'bddat'
	The signals 'cont_print' and 'corr_print'
	The signal 'save_full'

	3 Developing COCO-compatible Toolboxes
	3.1 Constructor functions
	3.2 Parser Functions
	Starting at an Initial Point
	Restarting at a Saved Solution Point
	Branch-Switching at a Bifurcation Point

	3.3 Defining Toolbox Properties
	Properties of the Continuation Algorithm
	Properties of the Correction Algorithm

	4 Functions for post-processing
	5 Utility Functions
	5.1 Toolbox Data Structures with Shared Fields
	5.2 Numerical Differentiation

