
Core Constructors and Utilities

Harry Dankowicz
Department of Mechanical Science and Engineering

University of Illinois at Urbana-Champaign

Mingwu Li
Department of Mechanical Science and Engineering

University of Illinois at Urbana-Champaign

November 15, 2017

Contents
1 Problem formulation 2

2 Staged construction 3

3 Constructor syntax 3

4 Application – sphere_optim 8

5 Data processing and visualization 15

1

1 Problem formulation
The coco platform supports analysis of continuation problems of the general form

Φ(u)
Ψ(u)− µ

Λ>Φ(u)λ+ Λ>Ψ(u)η
η − ν

 = 0 (1)

where Φ : Rn → Rm, Ψ : Rn → Rs, ΛΦ : Rn → Rl×k, and ΛΨ : Rn → Rh×k. Elements
of Φ are called zero functions. Elements of Ψ are called monitor functions. Elements of
ΛΨ and ΛΨ are called adjoint functions. Elements of the vector u are called continuation
variables. Elements of µ and ν are called continuation parameters. Elements of λ and η are
called continuation multipliers. The representation in coco of the adjoint conditions is of
the form π>{λ,η}Λ(u) = 0, where π{λ,η} is some permutation of the continuation multipliers,
determined during construction, and Λ>(u) is a corresponding permutation of the columns
of
(

Λ>Φ(u) Λ>Ψ(u)
)
.

The vectors u, λ, and η are said be initialized when they are associated with identically-
sized numerical vectors u0, λ0, η0. Unless otherwise stated, the vectors µ and ν are initialized
with Ψ(u0) and η0, respectively.

Consider an indexing of the elements of µ by integers in the set {1, . . . , s} and of the
elements of ν by integers in the set {s + 1, . . . , s + h}. Then, during continuation, the
index sets Iµ ⊆ {1, . . . , s} and Iν ⊆ {s+ 1, . . . , s+ h} identify continuation parameters that
are fixed and not included among the unknowns whose values are defined implicitly by the
continuation problem. Continuation parameters indexed by integers in Iµ ∪ Iν are said to
be inactive. The remaining continuation parameters are said to be active. The dimensional
deficit of the continuation problem is the difference between the number of unknowns and
the number of equations, i.e., n+ l+ h− |Iµ| − |Iν | −m− k. When this is greater than 0, it
equals the dimension of the unique solution manifold through any regular solution point.

The general form of the continuation problem is implemented in coco in one of two
possible ways. In the first, and less common approach, a call to the coco_add_func con-
structor is used to define the function Φ and to initialize u. This is followed by another
call to the coco_add_func constructor to define the function Ψ, associate string labels with
the elements of µ, and initialize the index set Iµ. This is then followed by a call to the
coco_add_adjt constructor in order to define the function ΛΦ and to initalize λ. Finally, a
second call to the coco_add_adjt constructor is used to define the function ΛΨ, initialize η,
associate string labels with the elements of ν, and initialize the index set Iν . Following this
initial construction, elements of Iµ ∪ Iν may be removed without replacement or switched
one-to-one with elements in {1, . . . , s+ h} \ (Iµ ∪ Iν) using the coco_xchg_pars utility.

More commonly, the coco constructors are used following a staged approach. At the
conclusion of each stage, the coco continuation problem structure encodes an embedded
subproblem of the full continuation problem, in terms of some functions Φ̃, Ψ̃, and Λ̃, vectors
ũ, µ̃, π̃{λ̃,η̃}, and ν̃, with ũ, λ̃, η̃, Ĩµ, and Ĩν initialized. This staged approach to problem

2

construction supports the development of toolboxes dedicated to constructing embeddable
subproblems and appending these to an existing continuation problem structure. Such tool-
boxes encapsulate one or several calls to the coco_add_func constructor and at most an
equal number of calls to the coco_add_adjt constructor.

2 Staged construction
In the coco paradigm of staged construction, a general continuation problem may be rep-
resented in terms of two Boolean matrices, associated with calls to coco_add_func and
coco_add_adjt, respectively, that satisfy the following two properties: i) no column consists
entirely of zeroes and ii) if i(j) denotes the row index of the first nonzero entry in the j-th
column, then i(1) = 1 and the sequence {i(1), . . .} is nondecreasing. There is a one-to-one
relationship between the rows of the second matrix and a subset of the rows of the first
matrix. An example of such a pair of matrices is shown below.

In general, the first of the two matrices has n columns, representing the elements of the
vector of continuation variables u, in order. Each call to the coco_add_func constructor
appends a row to this matrix, and associates this row with a coco-compatible function
encoding. Nonzero entries in this row indicate dependence of this function on a subset of
already initialized elements of u, as well as on elements of u that are initialized in this call.
In the notation of the previous paragraph, the j-th element of u is initialized in the i(j)-th
call to coco_add_func.

The k columns of second of the two matrices represent the columns of Λ(u). Each call
to the coco_add_adjt constructor appends a row to this matrix, and associates this row
with a coco-compatible function encoding. Nonzero entries in this row indicate columns
whose content is partially assigned from the output of this function. The dependence of
this function on a subset of the elements of u is identical to that indicated by the uniquely
associated row of the first matrix.

The one-to-one association between rows of the second matrix and a subset of rows of
the first matrix allows for a default behavior of coco_add_adjt, in which construction relies
on information provided to coco by the associated call to coco_add_func. Specifically,
provided that the associated call to coco_add_func includes reference to an explicit encoding
of the Jacobian of the zero or monitor function, then omission of a function handle in the
call to coco_add_adjt implies that this explicit Jacobian should be used to compute the
corresponding elements of Λ(u).

3 Constructor syntax
We construct a function object to represent a zero or monitor function and append this to a
partially implemented continuation problem structure prob by adhering to the appropriate
argument syntax for the coco_add_func constructor:

>> prob = coco_add_func(prob, fid, varargin);

3

where

varargin = (@f, [@df, [@ddf,]] | @fdf [@ddf,]) data, type_spec, opts

Here, the function identifier fid denotes a string variable that is uniquely identified with
this call to coco_add_func and that can be used to reference the function object that is
instantiated in this call, e.g., in subsequent calls to coco_add_func.

The argument @f denotes a function handle to a coco-compatible encoding of a real-
ization f : Rp → Rq, @df denotes a function handle to a coco-compatible encoding of
the function Df : Rp → Rq×p whose component functions are first partial derivatives of f
with respect to its arguments, and @ddf denotes a function handle to a coco-compatible
encoding of the function D2f : Rp → Rq×p×p whose component functions are second partial
derivatives of f with respect to its arguments. The integer p is less than or equal to the
number of continuation variables introduced in this and previous stages of construction. For
a zero function, the integer m − q is greater than or equal to number of components of Φ
introduced in previous stages of construction. For a monitor function, s− q is greater than
or equal to the number of components of Ψ introduced in previous stages of construction.
In lieu of separate encodings for f and Df , the notation @fdf denotes a function handle to
a coco-compatible encoding {f,Df} : Rp → {Rq,Rq×p}.

The function data structure data contains a structure array with function-specific content
that can be accessed and modified by the encodings of f , Df and D2f . If this variable is
an instance of the coco_func_data class, then its content may be accessed and modified by
any other function to which the variable is sent. A write-protected copy of the function data
structure associated with the function identifier fid is returned by the call

>> coco_get_func_data(prob, fid, ’data’)

Typically, the function data structure contains information that can be precomputed and
reused in multiple calls to the encodings of f and its derivatives, for example during the
application of a sequence of Newton iterations. Changes to data between continuation steps
are commonly associated with adaptive discretizations of an infinite-dimensional problem or
with parameterizations that depend on previous points on the solution manifold.

The argument type_spec is the single string ’zero’ in the case that f represents a
realization of a zero function. For a monitor function, type_spec is the string

• ’active’ followed by a cell array of q string labels assigned to the corresponding
embedded continuation parameters, which are designated as initially active;

• ’inactive’ followed by a cell array of q string labels assigned to the corresponding
embedded continuation parameters, which are designated as initially inactive;

• ’internal’ followed by a cell array of q string labels assigned to the corresponding
embedded continuation parameters, which are designated as initially active;

• ’regular’ followed by a cell array of q string labels assigned to the corresponding
non-embedded continuation parameters; or

4

• ’singular’ followed by a cell array of q string labels assigned to the corresponding
non-embedded continuation parameters.

Initially inactive continuation parameters may be activated by an exchange with an active
continuation parameter using the coco_xchg_pars utility, or by explicitly releasing them in
the call to the coco entry-point function. Initially active continuation parameters may be
deactivated by an exchange with an inactive continuation parameter using coco_xchg_pars

or, in the case of parameters labeled as ’internal’, by an automatic exchange with over-
specified inactive continuation parameters in the call to the coco entry-point function.

Monitor functions associated with embedded continuation parameters must be continu-
ously differentiable. In contrast, non-embedded continuation parameters are associated with
monitor functions that may not be differentiable, although they need to be continuous func-
tions along the solution manifold. While embedded continuation parameters are treated as
unknowns and solved for together with the continuation variables, non-embedded continua-
tion parameters are assigned values by evaluating the corresponding monitor function after
the continuation variables have been found. Non-embedded continuation parameters allow
for detection of regular special points with nonsingular problem Jacobian or approximate
detection of singular special points with singular problem Jacobian.

The argument opts is a placeholder for an arbitrary sequence of additional arguments
that modify the construction of the function object. For example, in the call

>> prob = coco_add_func(prob, ..., ’f+df’);

the flag ’f+df’ indicates that the first function handle in varargin is of the form @fdf. In
the call

>> prob = coco_add_func(prob, ..., ’fdim’, 3);

the flag ’fdim’ indicates that the output dimension q equals 3, thereby eliminating the need
to determine q by evaluation of the function f during construction.

The input argument to the function f is populated at run-time with a subset of p elements
of u, indexed by a function-specific, ordered, dependency-index set K. For example, if 12
continuation variables have been introduced in previous stages of construction, then the call

>> prob = coco_add_func(prob, ..., ’uidx’, [2 4:10], ’u0’, [0.3 2.5]);

results in the assignments K = {2, 4, 5, 6, 7, 8, 9, 10, 13, 14} and u0,{13,14} = (0.3, 2.5). When
the ’u0’ flag is present, an optional additional inclusion of the flag ’t0’ as in this call

>> prob = coco_add_func(prob, ..., ’u0’, [0.3 2.5], ’t0’, [1.4 3.9]);

results in the assignment t0,{13,14} = (1.4, 3.9) of components of a vector parallel to the initial
direction of continuation. When the ’t0’ flag is not present, these components default to 0.

A copy of the function dependency index set may be obtained with the call

>> coco_get_func_data(prob, fid, ’uidx’);

In a typical application, the call

5

>> [data uidx] = coco_get_func_data(prob, fid1, ’data’, ’uidx’);

may be followed by a construction of the form

>> prob = coco_add_func(prob, ..., ’uidx’, uidx(data.x_idx));

where uidx(data.x_idx) evaluates to a subset of the function dependency index set of the
function with function identifier fid1, indexed by the x_idx field of the function data struc-
ture of this function. This type of formulation uses the relative indexing of data.x_idx to
accommodate any dependence on preceding stages of construction, without necessitating ex-
plicit reference to the detailed implementation of each such stage. The function dependency
index set associated with the function identifier fid may also be extracted from data stored
to disk during continuation using the coco_read_solution utility according to the syntax:

>> uidx = coco_read_solution(fid, run, lab, ’uidx’);

where run is a string that denotes the run identifier and lab is an integer that identifies the
solution label.

Each call to coco_add_func may be uniquely associated to a subsequent call to the
coco_add_adjt constructor according to the syntax:

>> prob = coco_add_adjt(prob, fid, varargin);

where

varargin = [(@g, | @gdg,) [@dg,] data,] [par_names, [’active’]] opts

and the function identifier fid is identical to the function identifier used in the preceding
call to coco_add_func.

Here, the argument @g denotes a function handle to a coco-compatible encoding of a
realization g : Rp → Rq1×q2 , while @dg denotes a function handle to a coco-compatible
encoding of the function Dg : Rp → Rq1×q2×p whose component functions are first partial
derivatives of g with respect to its arguments. In lieu of separate encodings for g and Dg,
the notation @gdg denotes a function handle to a coco-compatible encoding {g,Dg} : Rp →
{Rq1×q2 ,Rq1×q2×p}. The data argument again denotes a function data structure. This may
be distinct from the function data structure of the corresponding zero or monitor function.
In more sophisticated applications, an instance of the coco_func_data class may be used to
share data between a zero function and the corresponding adjoint function.

If the preceding call to the coco_add_func constructor defined a zero function, then
the call to coco_add_adjt adds content to ΛΦ and initializes a corresponding subset of
the continuation multipliers λ. In this case, the integer l − q1 is greater than or equal to
the number of rows of ΛΦ introduced in previous stages of construction. Similarly, if the
associated call to coco_add_func defined a monitor function, then the call to coco_add_adjt

adds content to ΛΨ and initializes a corresponding subset of the continuation multipliers η.
In this case, the integer h−q1 is greater than or equal to the number of rows of ΛΨ introduced
in previous stages of construction.

As in the calling syntax to coco_add_func, the opts argument is a placeholder for an ar-

6

bitrary sequence of additional arguments that modify the construction of the adjoint function
object. For example, in the call

>> prob = coco_add_adjt(prob, ..., ’f+df’);

the flag ’f+df’ indicates that the first function handle in varargin is of the form @gdg.
The integer q1 equals the number of continuation multipliers associated with this stage

of construction. These multipliers are initialized to 0 by default. The default behavior can
be overridden by including the flag ’l0’ among the opts arguments followed by an array of
real numbers of length q1, as in the call

>> prob = coco_add_adjt(prob, ..., ’l0’, [3.8 1.5 -0.43]);

where the corresponding continuation multipliers are initialized to 3.8, 1.5, and −0.43, re-
spectively. An optional additional inclusion of the flag ’tl0’ followed by an array of real
numbers of length q1 may be used to initialize the corresponding components of the vector
parallel to the initial direction of continuation.

If the preceding call to coco_add_func defined a monitor function, then each continuation
multiplier is associated with an element of the continuation parameter vector ν. In this case,
the argument par_names must contain a cell array of q1 string labels assigned to these
parameters, which are inactive by default. The optional ’active’ flag may be used to
override this default behavior.

If the first set of optional arguments is omitted in a call to coco_add_adjt, then g is
assumed to equal Df , in which case q1 = q and q2 = p. If a function handle to D2f is
provided in the call to coco_add_func, then Dg is assumed to equal D2f .

The input dimension p is inherited from the preceding call to coco_add_func. The
output dimensions q1 and q2 may be determined by evaluation of g during construction.
Such evaluation is suppressed if opts includes the flag ’adim’ followed by a vector of two
integers, assigned to q1 and q2, respectively.

If the top left 5× 8 submatrix of Λ has been defined in previous stages of construction,
then the call

>> prob = coco_add_adjt(prob, ..., ’adim’, [3 6], ’aidx’, [1 3:5]);

uses the flag ’aidx’ to indicate that the first four columns of the output of g should be
assigned to columns 1, 3, 4, and 5 of the three rows added to Λ, while the remaining two
columns of the output of g are padded from the top with five 0’s and appended as entire
columns to Λ.

As with coco_add_func, relative indexing may be used to avoid hard-coding dependencies
on the detailed implementations of previous stages of construction. To this end, the call

>> [data axidx] = coco_get_adjt_data(prob, fid, ’data’, ’axidx’);

provides a write-protected copy of the function data structure and an array of column indices
associated with potentially nonzero columns in the rows of Λ associated with the function
identifier fid. Similarly,

7

>> coco_get_adjt_data(prob, fid, ’afidx’);

returns an integer array whose entries identify rows of Λ associated with the function identi-
fier fid, as well as with the location of the corresponding continuation multipliers in π{λ,η}.
This integer array may also be extracted from data stored to disk during continuation using
the coco_read_adjoint utility according to the syntax:

>> lidx = coco_read_adjoint(fid, run, lab, ’lidx’);

where run is a string that denotes the run identifier and lab is an integer that identifies the
solution label.

4 Application – sphere_optim

Consider the problem of finding stationary points of the function u 7→ u1 + u2 + u3 + u4 on
the unit 3-sphere in R4. To this end, consider the Lagrangian

L(u, µsum, µu, λ, ηsum, ηu) = µsum + λ(‖u‖2 − 1) + ηsum

(
4∑
i=1

ui − µsum

)
+ ηTu · (u− µu) (2)

in terms of the Lagrange multipliers λ, ηsum, and ηu. Necessary conditions for stationary
points along the constraint manifold correspond to points (u, µsum, µu, λ, ηsum, ηu) for which
δL = 0 for any infinitesimal variations δu, δµsum, δµu, δλ, δηsum, and δηu. In this case, these
conditions take the form

‖u‖2 − 1 = 0,
4∑
i=1

ui − µsum = 0, u− µu = 0, 2λu+ ηsum1 + ηu = 0, (3)

1 − ηsum = 0, and ηu = 0. There are two distinct solutions to these conditions, namely the
points u = µu = ±1

2
1, µsum = ±2, λ = ∓1, ηsum = 1, and ηu = 0.

Stationary points along the solution manifold may be located using a method of successive
continuation1 applied to the extended continuation problem obtained by combining (3) with
ηsum − νsum = 0 and ηu − νu = 0 in terms of the continuation variables u, continuation
multipliers (λ, ηsum, ηu), and continuation parameters (µsum, µu, νsum, νu). The dimensional
deficit of this extended continuation problem equals 5. We get one-dimensional solution
manifolds by designating four of the continuation parameters as inactive. Alternatively,
if Iµ = {1, . . . , 5} and Iν = {6, . . . , 10}, then the dimensional deficit of the corresponding
restricted continuation problem equals −5, and we get one-dimensional solution manifolds
by designating six of the continuation parameters as active.

Suppose, for example, that µsum, µu,{1,4}, νsum, and νu,{2,3} are active and µu,{2,3} and
νu,{1,4} are inactive with ρ2 := 1 − µ2

u,2 − µ2
u,3 > 0, ρ > 0, and νu,1 = νu,4 = 0. Solutions to

1J. Kernévez and E. Doedel, “Optimization in bifurcation problems using a continuation method,” in
Bifurcation: Analysis, Algorithms, Applications, Springer, 1987, pp. 153–160.

8

the corresponding restricted continuation problem of the form

(u, µsum, µu, λ, ηsum, ηu, νsum, νu) =

(
µu,

4∑
i=1

µu,i, µu, λ, νsum, νu, νsum, νu

)
(4)

are located on three one-dimensional manifolds given by

µu,1 = ρ cos θ, µu,4 = ρ sin θ, λ = νsum = νu,2 = νu,3 = 0 (5)

and

µu,1 = µu,4 = ± ρ√
2
, λ = ∓νsum√

2ρ
, (6)

νu,2 = νsum

(
±
√

2µu,2
ρ

− 1

)
, νu,3 = νsum

(
±
√

2µu,3
ρ

− 1

)
(7)

parameterized by θ and νsum, respectively. The manifolds in (6) intersect the manifold in (5)
at the points given by

µu,1 = µu,4 = ± ρ√
2
, λ = νu,2 = νu,3 = 0, (8)

corresponding to local extrema in the value of µsum along the first manifold.
Notably, there is a unique point on each of the latter manifolds at which ηsum = 1. If

we consider the restricted continuation problem obtained with µsum, µu,{1,2,4}, and νu,{2,3}
active, and µu,3, νu,{1,4}, and νsum inactive with νu,1 = νu,4 = 0 and νsum = 1, then solutions
are located on the one-dimensional manifolds given by

µu,1 = µu,4 = ± ρ√
2
, µ2

u,2 = 1− ρ2 − µ2
u,3, λ = ∓ 1√

2ρ
(9)

νu,2 = ±
√

2µu,2
ρ

− 1, νu,3 = ±
√

2µu,3
ρ

− 1, (10)

parameterized by ρ.
There is a unique point along each of the tertiary manifolds in (9)-(10) at which ηu,2 = 0,

obtained with

ρ =

√
2

3
(1− µ2

u,3), µu,2 = ±
√

1

3
(1− µ2

u,3). (11)

If we consider the restricted continuation problem obtained with µsum, µu, and νu,3 active,
and νu,{1,2,4}, and νsum inactive with νu,1 = νu,2 = νu,4 = 0 and νsum = 1, then solutions are
located on the one-dimensional manifolds given by

µu,1 = µu,2 = µu,4 = ± ρ√
2
, µ2

u,3 = 1− 3

2
ρ2, λ = ∓ 1√

2ρ
, νu,3 = ±

√
2µu,3
ρ

− 1, (12)

9

parameterized by ρ. Notably, the points along each of these manifolds with ηu,3 = 0 coincide
with the stationary points found previously

We proceed to implement the extended continuation problem in coco by making re-
peated use of the coco_add_func and coco_add_adjt constructors. We initialize the contin-
uation problem structure and two useful cell arrays in the following commands.

>> prob = coco_prob;
>> fcn1 = { @sphere, @sphere_du, @sphere_dudu };
>> fcn2 = { @comb, @comb_du, @comb_dudu };

The function handles @sphere, @sphere_du, and so on point to the coco compatible encod-
ings shown below.

function [data, f] = sphere(prob, data, u)
f = u(1)^2 + u(2)^2 + u(3)^2 + u(4)^2 - 1;
end

function [data, J] = sphere_du(prob, data, u)
J = [2*u(1), 2*u(2), 2*u(3), 2*u(4)];
end

function [data, dJ] = sphere_dudu(prob, data, u)

dJ = zeros(1,4,4);
dJ(1,1,1) = 2;
dJ(1,2,2) = 2;
dJ(1,3,3) = 2;
dJ(1,4,4) = 2;

end

function [data, f] = comb(prob, data, u)
f = u(1)+u(2)+u(3)+u(4);
end

function [data, J] = comb_du(prob, data, u)
J = [1, 1, 1, 1];
end

function [data, dJ] = comb_dudu(prob, data, u)
dJ = zeros(1,4,4);
end

In the first stage of construction, we define a zero function and initialize part of the vector
of continuation variables, as shown below.

>> prob1 = coco_add_func(prob, ’sphere’, fcn1{:}, [], ’zero’, ...
’u0’, [1 0 0 0]);

At this point, Φ̃ : R4 → R is defined by Φ̃ : ũ 7→ ‖ũ‖2 − 1, Ψ̃ is empty, and ũ0 = (1, 0, 0, 0).
In the second stage of construction, the call

>> prob1 = coco_add_func(prob1, ’sum’, fcn2{:}, [], ’inactive’, ...

10

’sum’, ’uidx’, 1:4);

results in no change to ũ or Φ̃, whereas now Ψ̃ : R4 → R is defined by Ψ̃(ũ) = ũ1+ũ2+ũ3+ũ4.
This function is associated with an initially inactive continuation parameter with string label
’sum’.

In the third and fourth stages of construction, shown below, we use the coco_add_pars

special-purpose wrapper to append four more monitor functions associated with two inactive
and two active continuation parameters.

>> prob1 = coco_add_pars(prob1, ’pars1’, [2 3], {’u2’ ’u3’}, ’inactive’);
>> prob1 = coco_add_pars(prob1, ’pars2’, [1 4], {’u1’ ’u4’}, ’active’);

Each call passes the arguments to an encapsulated call to coco_add_func with function
given by the identity map and its derivatives, and with ’uidx’ equal to [2 3] and [1 4],
respectively. As this concludes the construction of zero or monitor functions, we conclude
that Φ : R4 → R and Ψ : R4 → R5, where

Φ : u 7→ ‖u‖2 − 1, Ψ : u 7→

u1 + u2 + u3 + u4

u2

u3

u1

u4

 , (13)

u0 = (1, 0, 0, 0), and Iµ = {1, 2, 3}.
We proceed to append adjoint function objects associated with each of the calls to

coco_add_func. Specifically, the call

>> prob1 = coco_add_adjt(prob1, ’sphere’);

results in Λ̃ : u 7→
(

2u1 2u2 2u3 2u4

)
and λ̃0 = 0. Similarly, the call

>> prob1 = coco_add_adjt(prob1, ’sum’, ’d.sum’, ’aidx’, (1:4)’);

results in
Λ̃ : u 7→

(
2u1 2u2 2u3 2u4

1 1 1 1

)
(14)

and η̃0 = 0. The corresponding element of ν is here associated with the string label ’d.sum’.
In each of the two following calls to coco_add_adjt, the elements of the identity matrix
are distributed among the two new rows appended to Λ according to the column indices
indicated by the flag ’aidx’.

>> prob1 = coco_add_adjt(prob1, ’pars1’, {’d.u2’ ’d.u3’}, ’aidx’, [2 3]);
>> prob1 = coco_add_adjt(prob1, ’pars2’, {’d.u1’ ’d.u4’}, ’aidx’, [1 4]);

while the corresponding continuation multipliers are initialized to 0. Since this completes

11

the construction of adjoint functions, it follows that

Λ : u 7→

2u1 2u2 2u3 2u4

1 1 1 1
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 (15)

with π{λ0,η0} = 0 and Iν = {4, 5, 6, 7, 8}. The second of the two commands below is then
equivalent to the computation of the manifold in (5) with ρ = 1.

>> cont_args = { 1, { ’sum’ ’d.sum’ ’d.u2’ ’d.u3’ }, [1 2] };
>> bd1 = coco(prob1, ’sphere1’, [], cont_args{:});

Continuation detects a branch point coincident with a local extremum in the continuation
parameter ’sum’ when this equals

√
2, i.e., for θ = π/4 in the notation of (5). At the branch

point, coco stores a second unit vector that is perpendicular to the tangent vector to the
solution manifold, such that the two vectors span a plane that also contains the tangent
vector to the second branch through the branch point. We extract this second unit vector
from the ’lsol’ field of the chart data array stored with the solution file, as shown here:

>> lab = coco_bd_labs(bd1, ’BP’);
>> chart = coco_read_solution(’sphere1’, lab, ’chart’);
>> cdata = coco_get_chart_data(chart, ’lsol’);

The vector we seek is in the v field of the cdata structure.
We proceed to reconstruct the continuation problem, using the branch point as the ini-

tial solution guess and appending the second unit vector as a suggested initial direction of
continuation in order to continue along the second branch through the branch point. The
following five commands reconstruct the zero and monitor functions:

>> [chart, uidx] = coco_read_solution(’sphere’, ’sphere1’, lab, ...
’chart’, ’uidx’);

>> prob2 = coco_add_func(prob, ’sphere’, fcn1{:}, [], ’zero’, ...
’u0’, chart.x, ’t0’, cdata.v(uidx));

>> prob2 = coco_add_func(prob2, ’sum’, fcn2{:}, [], ’inactive’, ...
’sum’, ’uidx’, 1:4);

>> prob2 = coco_add_pars(prob2, ’pars1’, [2 3], {’u2’ ’u3’}, ’inactive’);
>> prob2 = coco_add_pars(prob2, ’pars2’, [1 4], {’u1’ ’u4’}, ’active’);

Here, the call to the coco_read_solution utility extracts the portion of the chart data array
and the function dependency index set associated with the function identifier ’sphere’ from
the branch point solution file. The x field of the chart variable reinitializes the continuation
variables in the first stage of construction.

The reconstruction of the adjoint functions shown below relies on repeated calls to the
coco_read_adjoint utility to extract portions of the chart data array and the row index sets
associated with the different function identifiers from the branch point solution file.

12

>> [chart, lidx] = coco_read_adjoint(’sphere’, ’sphere1’, lab, ...
’chart’, ’lidx’);

>> prob2 = coco_add_adjt(prob2, ’sphere’, ’l0’, chart.x, ...
’tl0’, cdata.v(lidx));

>> [chart, lidx] = coco_read_adjoint(’sum’, ’sphere1’, lab, ...
’chart’, ’lidx’);

>> prob2 = coco_add_adjt(prob2, ’sum’, ’d.sum’, ’aidx’, 1:4, ...
’l0’, chart.x, ’tl0’, cdata.v(lidx));

>> [chart, lidx] = coco_read_adjoint(’pars1’, ’sphere1’, lab, ...
’chart’, ’lidx’);

>> prob2 = coco_add_adjt(prob2, ’pars1’, {’d.u2’ ’d.u3’}, ’aidx’, [2 3], ...
’l0’, chart.x, ’tl0’, cdata.v(lidx));

>> [chart, lidx] = coco_read_adjoint(’pars2’, ’sphere1’, lab, ...
’chart’, ’lidx’);

>> prob2 = coco_add_adjt(prob2, ’pars2’, {’d.u1’ ’d.u4’}, ’aidx’, [1 4], ...
’l0’, chart.x, ’tl0’, cdata.v(lidx));

The second of the two commands below is then equivalent to the computation along the
manifold in (6)-(7) with ρ = 1, µu,1 = µu,4 = 1/

√
2, and µu,2 = µu,3 = 0.

>> cont_args = { 1, { ’d.sum’ ’sum’ ’d.u2’ ’d.u3’ }, { [0 1], [-2 2] } };
>> bd2 = coco(prob2, ’sphere2’, [], cont_args{:});

Continuation terminates once ’d.sum’ equals 1, at which point ’d.u2’ and ’d.u3’ both
equal −1. The following sequence of commands reconstructs the continuation problem and
initializes the continuation variables and continuation multipliers using information from this
terminal solution point.

>> lab = coco_bd_labs(bd2, ’EP’);
>> chart = coco_read_solution(’sphere’, ’sphere2’, lab(2), ’chart’);
>> prob3 = coco_add_func(prob, ’sphere’, fcn1{:}, [], ’zero’, ...

’u0’, chart.x);
>> prob3 = coco_add_func(prob3, ’sum’, fcn2{:}, [], ’inactive’, ...

’sum’, ’uidx’, (1:4)’);
>> prob3 = coco_add_pars(prob3, ’pars1’, [2 3], {’u2’ ’u3’}, ’inactive’);
>> prob3 = coco_add_pars(prob3, ’pars2’, [1 4], {’u1’ ’u4’}, ’active’);
>> chart = coco_read_adjoint(’sphere’, ’sphere2’, lab(2), ’chart’);
>> prob3 = coco_add_adjt(prob3, ’sphere’, ’l0’, chart.x);
>> chart = coco_read_adjoint(’sum’, ’sphere2’, lab(2), ’chart’);
>> prob3 = coco_add_adjt(prob3, ’sum’, ’d.sum’, ’aidx’, 1:4, ...

’l0’, chart.x);
>> chart = coco_read_adjoint(’pars1’, ’sphere2’, lab(2), ’chart’);
>> prob3 = coco_add_adjt(prob3, ’pars1’, {’d.u2’ ’d.u3’}, ...

’aidx’, [2 3], ’l0’, chart.x);
>> chart = coco_read_adjoint(’pars2’, ’sphere2’, lab(2), ’chart’);
>> prob3 = coco_add_adjt(prob3, ’pars2’, {’d.u1’ ’d.u4’}, ...

’aidx’, [1 4], ’l0’, chart.x);

In this case, we allow for default initialization of the tangent vector, since there is a unique
solution manifold of the restricted continuation problem through the initial point. In the
next command, the coco_add_event utility is used to introduce a special point, designated
by the label ’OPT’ whenever ’d.u2’ equals 0.

13

>> prob3 = coco_add_event(prob3, ’OPT’, ’d.u2’, 0);

The second of the two commands below is then equivalent to the computation along the
manifold in (9)-(10) with µu,1 = µu,4 = ρ/

√
2 and µu,3 = 0.

>> cont_args = {1, {’d.u2’ ’sum’ ’u2’ ’d.u3’}, {[] [-2 2]}};
>> bd3 = coco(prob3, ’sphere3’, [], cont_args{:});

Continuation results in a unique point with ’d.u2’ equal to 0, at which ’sum’ equals
√

3,
’u2’ equals 1/

√
3, and ’d.u3’ equals −1.

We conclude our analysis by again reconstructing the continuation problem, this time
initializing the continuation variables and continuation multipliers using solution data from
the ’OPT’ point in the previous run.

>> lab = coco_bd_labs(bd3, ’OPT’);
>> chart = coco_read_solution(’sphere’, ’sphere3’, lab, ’chart’);
>> prob4 = coco_add_func(prob, ’sphere’, fcn1{:}, [], ’zero’, ...

’u0’, chart.x);
>> prob4 = coco_add_func(prob4, ’sum’, fcn2{:}, [], ’inactive’, ...

’sum’, ’uidx’, 1:4);
>> prob4 = coco_add_pars(prob4, ’pars1’, [2 3], {’u2’ ’u3’}, ’inactive’);
>> prob4 = coco_add_pars(prob4, ’pars2’, [1 4], {’u1’ ’u4’}, ’active’);
>> chart = coco_read_adjoint(’sphere’, ’sphere3’, lab, ’chart’);
>> prob4 = coco_add_adjt(prob4, ’sphere’, ’l0’, chart.x);
>> chart = coco_read_adjoint(’sum’, ’sphere3’, lab, ’chart’);
>> prob4 = coco_add_adjt(prob4, ’sum’, ’d.sum’, ’aidx’, 1:4, ...

’l0’, chart.x);
>> chart = coco_read_adjoint(’pars1’, ’sphere3’, lab, ’chart’);
>> prob4 = coco_add_adjt(prob4, ’pars1’, {’d.u2’ ’d.u3’}, ...

’aidx’, [2 3], ’l0’, chart.x);
>> chart = coco_read_adjoint(’pars2’, ’sphere3’, lab, ’chart’);
>> prob4 = coco_add_adjt(prob4, ’pars2’, {’d.u1’ ’d.u4’}, ...

’aidx’, [1 4], ’l0’, chart.x);

This encoding again allow for default initialization of the tangent vector, since there is a
unique solution manifold of the restricted continuation problem through the initial point.
In the next command, the coco_add_event utility is used to introduce a special point,
designated by the label ’OPT’ whenever ’d.u3’ equals 0.

>> prob4 = coco_add_event(prob4, ’OPT’, ’d.u3’, 0);

The second of the two commands below is then equivalent to the computation along the
manifold in (12) with µu,1 = µu,2 = µu,4 = ρ/

√
2.

>> cont_args = {1, {’d.u3’ ’sum’ ’u2’ ’u3’}, {[] [-2 2]}};
>> coco(prob4, ’sphere4’, [], cont_args{:});

Continuation results in a unique point with ’d.u3’ equal to 0, at which ’sum’ equals 2, and
’u2’ and ’u3’ both equal 1/2.

14

Exercises

1. Consider the problem of finding stationary points in R3 of the function u 7→ u2 on the
manifold defined by u2−u1(u3−u2

1) = 0. Repeat the analysis in this section and verify
your theoretical predictions using coco.

2. Visualize different projections of the solution manifolds considered in the search for
stationary points on the sphere and in the previous exercise.

5 Data processing and visualization
During continuation, two forms of data are stored to disk for later processing. Small amounts
of data associated with all successfully located points on the solution manifold are recorded
in a single location in order to enable analysis and visualization of properties of the solution
manifold as a whole. Large amounts of data associated with each of a sampled selection of
successfully located points along the solution manifold are recorded in a sequence of separate
files in order to enable analysis and visualization of properties of individual solutions.

We refer to data describing properties of the solution manifold as a whole, rather than
a subset of individual points, as bifurcation data and use the abbreviation bd in associated
coco commands and scripts. For example, to extract saved bifurcation data for further
processing, we use the coco_bd_col utility, as shown below.

>> bd = coco_bd_read(run);

Here, run is the run identifier associated with the stored data. This command assigns a
rectangular cell array to bd. This array includes a single header row with string labels
identifying the content of each column. The coco_bd_col utility can be used to extract data
from the column with string label name, as shown below.

>> coco_bd_col(bd, name)

Data associated with multiple columns can be extracted by replacing name with a cell array
of corresponding string labels.

The utility coco_plot_bd can be used to visualize bifurcation data associated with a
specific continuation run. A call to coco_plot_bd must adhere to the following argument
syntax:

[theme], run, [col1, [idx1], [col2, [idx2], [col3, [idx3]]]]

Here, the run argument is the run identifier associated with the stored bifurcation data. In
the absence of any further arguments, coco_plot_bd executes a behavior defined by a default
visualization theme.

As an example, the coco_plot_theme utility defines the default visualization theme for
a family of solution points that are not associated with a particular toolbox. The command

15

>> thm = coco_plot_theme();

assigns the corresponding struct to the thm variable. For a family of solution points associated
with a particular toolbox, a toolbox-specific visualization theme defines the default behavior.
The optional argument theme in the call to coco_plot_bd is a struct whose fields substitute
for, or add to, the content of the default visualization theme, in order to override the default
behavior or define new behaviors. To use a toolbox-specific visualization theme associated
with a toolbox instance in a composite continuation problem, assign the corresponding object
instance identifier to the oid field of the theme argument.

By default, coco_plot_bd produces a two-dimensional graph of simultaneous variations
in two quantities that are each computable from the bifurcation data. As an example, the
command below generates a two-dimensional plot of a piecewise-linear interpolant connecting
points with coordinates given by data in the ’col1’ and ’col2’ columns of the bifurcation
data cell array.

>> coco_plot_bd(run, ’col1’, ’col2’)

Similarly, the command below generates a three-dimensional plot of a piecewise-linear inter-
polant connecting points with coordinates given by data in the ’col1’, ’col2’, and ’col3’

columns of the bifurcation data cell array.

>> coco_plot_bd(run, ’col1’, ’col2’, ’col3’)

In the case of a two-dimensional plot, it is possible to omit both or only the second col-
umn labels, provided that the visualization theme includes default labels in the bd.col1

and/or bd.col2 fields, respectively. Notably, for the default visualization theme defined by
coco_plot_theme, the fields bd.col1 and bd.col2 are empty.

In general, the arguments col1, col2 and, in the case of three-dimensional graphs, col3
are either single string labels or cell arrays of string labels associated with columns of the
bifurcation data cell array with numerical content. The optional arguments idx1, idx2, and
idx3 are either single integers or handles to vectorized functions. In the former case, the
preceding argument must be a single string label. The integer then defines a component of
the numerical array in the corresponding column of the bifurcation data. In the command

>> coco_plot_bd(run, ’col1’, 3, ’col2’)

the integer 3 indicates that the horizontal coordinate is given by the third component of the
data in each row of the ’col1’ column. In contrast, the command

>> coco_plot_bd(run, ’col1’, ’col2’)

is equivalent to the command

>> coco_plot_bd(run, ’col1’, 1, ’col2’, 1)

while the command

>> coco_plot_bd(run, ’col1’, ’col1’)

16

is equivalent to the command

>> coco_plot_bd(run, ’col1’, 1, ’col1’, 2)

which, of course, throws an error if the ’col1’ column contains scalar data.
In the case that the idx1, idx2, or idx3 optional argument is a function handle, then the

number of inputs to this function must equal the number of string labels in the preceding
argument. The corresponding function must return a one-dimensional array obtained by
applying a suitable operation to the content of the corresponding columns of the bifurcation
data. As an example, in the command

>> coco_plot_bd(run, ’col1’, 3, {’col2’, ’col3’}, @(x,y) x+y)

the fourth and fifth arguments indicate that the vertical coordinate is given by the sum of
the data in the ’col2’ and ’col3’ columns.

The utility coco_plot_sol provides an interface to toolbox-specific visualization of prop-
erties of individual solutions from a specific continuation run. A call to coco_plot_sol must
adhere to the following argument syntax:

[theme], run, [labs], oid, [oidx], [col1, [idx1], [col2, [idx2], [col3, [idx3]]]]

The meaning of the run and theme arguments is identical to the case of coco_plot_bd. To
visualize the properties associated with a subset of solutions along the solution manifold, the
corresponding solution labels are assigned to the optional labs argument. In its absence, all
stored solutions are visualized in the same plot.

To visualize solution properties associated with a single toolbox instances in a composite
continuation problem, assign the corresponding object identifier to the oid argument. To
visualize solution properties associated with multiple instances of the same toolbox with
object identifiers of the form ’oid1’, ’oid2’, and so on, assign the string ’oid’ to the oid

argument and the corresponding integer array to the optional oidx argument.
The behavior of coco_plot_sol is determined by a toolbox-specific visualization theme.

Such a visualization theme defines string labels that may be included in the col1, col2 and,
as applicable, col3 arguments, in addition to the headers for columns of bifurcation data.
As an example, the ’coll’ toolbox visualization theme supports use of the ’t’ and ’x’

string labels in order to generate two- or three-dimensional visualizations of the spacetime
trajectory segment. The optional idx1, idx2, and idx3 arguments play the same role for
coco_plot_sol as in the case of coco_plot_bd. Examples of their use are included with the
toolbox demos.

An alternative use of coco_plot_sol relies on assigning a function handle to the plot_sol
field of the optional theme argument. An example of such use is demonstrated in the pdeeig
demo of the ’ep’ toolbox.

17

Exercises

1. Use an example to show that the command

>> coco_plot_bd(run, ’col1’, ’col2’, ’col2’)

is equivalent to the command

>> coco_plot_bd(run, ’col1’, 1, ’col2’, 1, ’col2’, 2)

2. Use an example to show that the command

>> coco_plot_bd(run, ’col1’, @(x) x(1,:) ’col1’, @(x) x(2,:))

is equivalent to the command

>> coco_plot_bd(run, ’col1’, ’col1’)

3. The coco_plot_bd utility uses the lspec, ustab, ustabfun, and usept properties of the
visualize theme to highlight different parts of a solution manifold according to prop-
erties of the corresponding solutions. Investigate the corresponding implementation in
the ’ep’ and ’po’ toolbox visualization themes, and construct an example in which
three different line styles are used to differentiate portions of the solution manifold of
a continuation problem.

18

