
The Periodic Orbit Toolbox

Harry Dankowicz
Department of Mechanical Science and Engineering

University of Illinois at Urbana-Champaign

Frank Schilder
Department of Mathematics

Technical University of Denmark

November 7, 2017

Contents
1 Introduction 2

2 A forced harmonic oscillator – linode 4

3 Nonlinear hardening – bistable 6

4 The Hopf normal form – hopf 10

5 A web of bifurcations – tor 12

6 Homoclinic bifurcations – marsden 15

7 Canard explosions – canard 17

8 A piecewise-smooth dynamical system – piecewise 19

9 An impact oscillator – impact 22

10 Bang-bang excitation – bangbang 25

11 Optimization – int_optim 28

12 Toolbox reference 40

1

1 Introduction
The ’po’ toolbox is a basic toolbox for continuation along families of single-segment periodic
orbits in smooth dynamical systems or multi-segment periodic orbits in hybrid dynamical
systems for evolution equations of the form

ẋ = F (t, x, p), t ∈ [T0, T0 + T] (1)

in terms of an initial time T0, an interval length T , a vector of state variables x ∈ Rn, a
vector of problem parameters p ∈ Rq, and a nonlinear operator F : R × Rn × Rq → Rn.
For infinite-dimensional problems, the toolbox applies to suitable discretizations of x and
F . The ’po’ toolbox belongs to the ’ode’ toolbox family, and is modeled on the ’po’ and
’hspo’ toolboxes, described in Recipes for Continuation1.

The ’po’ toolbox relies on the ’coll’ toolbox for adaptive discretization of each tra-
jectory segment. It supports autonomous implementations of the operator F that omit
dependence on the first argument. In fact, unless otherwise indicated, this is the assumed
default and explicit time-dependence must be indicated by an optional setting.

The ’po’ toolbox supports detection of branch and fold points (inherited from the asso-
ciated atlas class), as well as critical thresholds associated with an estimated discretization
error (inherited from the ’coll’ toolbox). In addition, the ’po’ toolbox supports detection
of

• saddle-node (cyclic fold) bifurcations,

• period-doubling (flip) bifurcations

• Neimark-Sacker (torus) bifurcations, and

• neutral saddle points (optional and disabled by default),

as well as continuation along families of saddle-node, period-doubling, and Neimark-Sacker
bifurcations. For continuation of periodic orbits, the ’po’ toolbox supports the construction
of the associated adjoint equations2.

The toolbox user interface is defined by the po_read_solution utility, which reads solu-
tion and toolbox data from disk, and by the toolbox constructors

• ode_isol2po for continuation along a family of single-segment periodic orbits in a
smooth dynamical system from an initial solution guess;

• ode_po2po for continuation along a family of single-segment periodic orbits in a smooth
dynamical system from a saved solution point;

1Dankowicz, H. & Schilder, F., Recipes for Continuation, Society for Industrial and Applied Mathematics,
2013.

2Li, M. & Dankowicz, H., Staged Construction of Adjoints for Constrained Optimization of Integro-
Differential Boundary-Value Problems, in review, 2017.

2

• ode_BP2po for continuation along a family of single-segment periodic orbits in a smooth
dynamical system from a branch point along a secondary branch;

• ode_HB2po for continuation along a family of single-segment periodic orbits in a smooth
dynamical system emanating from a Hopf bifurcation point along a family of equilibria;

• ode_PD2po for continuation along a family of single-segment periodic orbits in a smooth
dynamical system from a period-doubling bifurcation point along the bifurcated branch;

• ode_isol2hspo for continuation along a family of multi-segment periodic orbits in an
autonomous hybrid dynamical system from an initial solution guess;

• ode_hspo2hspo for continuation along a family of multi-segment periodic orbits in an
autonomous hybrid dynamical system from a saved solution point;

• ode_BP2hspo for continuation along a family of multi-segment periodic orbits in an
autonomous hybrid dynamical system from a branch point along a secondary branch;

• ode_PD2hspo for continuation along a family of multi-segment periodic orbits in an
autonomous hybrid dynamical system from a period-doubling bifurcation point along
the bifurcated branch;

• ode_SN2SN for continuation along a family of saddle-node bifurcation points from a
saved saddle-node bifurcation point;

• ode_PD2PD for continuation along a family of period-doubling bifurcation points from
a saved period-doubling bifurcation point;

• ode_TR2TR for continuation along a family of Neimark-Sacker bifurcation points from
a saved Neimark-Sacker bifurcation point.

The additional constructors adjt_isol2po, adjt_po2po, and adjt_BP2po contribute terms
to the adjoint equations associated with the zero and monitor functions appended to a
continuation problem by the ode_isol2po, ode_po2po, ode_BP2po constructors, respectively.
Similarly, adjt_isol2hspo, adjt_hspo2hspo, and adjt_BP2hspo contribute terms to the
adjoint equations associated with the zero and monitor functions appended to a continuation
problem by the ode_isol2hspo, ode_hspo2hspo, and ode_BP2hspo constructors, respectively.

Usage is illustrated in the following several examples. Each example corresponds to fully
documented code in the coco/po/examples folder in the coco release. Slight differences
between the code included below and the example implementations in coco/po/examples

show acceptable variations in the coco syntax and demonstrate alternative solutions to
construction and analysis. To gain further insight, please run the code to generate and
explore figures and screen output.

Detailed information about coco utilities deployed in these examples may be found in
the document “Short Developer’s Reference for coco,” available in the coco/help folder in
the coco release, and in Recipes for Continuation.

3

2 A forced harmonic oscillator – linode

Consider the nonautonomous dynamical system governed by the vector field

F (t, x, p) =

(
x2

−x2 − px1 + cos t

)
(2)

in terms of the vector of state variables x = (x1, x2) ∈ R2 and the scalar problem parameter
p ∈ R. For every p, there exists a unique periodic orbit given by

x1(t) =
sin t+ (p− 1) cos t

p2 − 2p+ 2
, x2(t) =

cos t− (p− 1) sin t

p2 − 2p+ 2
(3)

with L2 norm

‖x(t)‖L2[0,2π] =

√
2π

p2 − 2p+ 2
(4)

and Floquet multipliers
e(−1±

√
1−4p)π. (5)

We encode vectorized implementations of the vector field and its Jacobians with respect
to the state variables and parameters in the functions linode, linode_DFDX, linode_DFDP,
and linode_DFDT, as shown below.

function y = linode(t, x, p)

x1 = x(1,:);
x2 = x(2,:);
p1 = p(1,:);

y(1,:) = x2;
y(2,:) = -x2-p1.*x1+cos(t);

end

function J = linode_DFDX(t, x, p)

x1 = x(1,:);
p1 = p(1,:);

J = zeros(2,2,numel(x1));
J(1,2,:) = 1;
J(2,1,:) = -p1;
J(2,2,:) = -1;

end

function J = linode_DFDP(t, x, p)

x1 = x(1,:);

4

J = zeros(2,1,numel(x1));
J(2,1,:) = -x1;

end

function Jt = linode_DFDT(t, x, p)

Jt = zeros(2,numel(t));
Jt(2,:) = -sin(t);

end

In the following commands, we assign the parameter label ’p’ to the pnames variable and
the numerical value 1 to p0 corresponding to the initial value for the problem parameter p.

>> pnames = ’p’;
>> p0 = 1;

The following call to ode45 then generates an initial solution guess for the discretization of
a periodic orbit.

>> [t0 x0] = ode45(@(t,x) linode(t,x,p0), [0 2*pi], [0; 1]);

The following sequence of commands encodes a periodic orbit continuation problem using
the ode_isol2po constructor.

>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);
>> prob = coco_set(prob, ’coll’, ’NTST’, 15);
>> coll_func = {@linode, @linode_DFDX, @linode_DFDP, @linode_DFDT};
>> coll_args = [coll_func, {t0, x0, pnames, p0}];
>> prob = ode_isol2po(prob, ’’, coll_args{:});

Here the ’autonomous’ setting of the ’ode’ toolbox is set to false, to indicate the explicit
dependence on the independent variable t. The number of discretization intervals used by
the ’coll’ toolbox is assigned the initial value of 15.

We proceed to assign the integer 1 to the optional ’NAdapt’ setting of the atlas algorithm
to ensure that adaptive changes are made to the orbit discretization after each successful
step of continuation.

>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1);
>> coco(prob, ’run’, [], 1, ’p’, [0.2 2]);

The dimensional deficit of the continuation problem is 0. Since the desired manifold dimen-
sionality is 1, it follows that the continuation parameter ’p’ is released during continuation
and allowed to vary on the interval [0.2, 2].

We may restart continuation from one of the periodic orbits obtained in the previous run,
as shown in the following commands.

>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);

5

>> prob = ode_po2po(prob, ’’, ’run’, 3);
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1);
>> coco(prob, ’run_again’, [], 1, ’p’, [0.05 3]);

These commands differ from the previous construction only in the use of the ode_po2po

constructor.

Exercises

1. Use the po_read_solution utility to extract the state-space trajectory corresponding
to one of the solutions found during continuation and graph this together with the
theoretical prediction.

2. In this example, the ’coll’ toolbox stores the L2 norm associated with each solution
trajectory in the ’||po.orb.x||_{L_2[0,T]}’ column of the bifurcation data cell array
stored to disk during continuation. Use the coco_bd_read and coco_bd_col utilities
to extract the corresponding numerical values from one of the continuation runs and
graph their dependence on p together with the theoretical prediction.

3. Use the po_read_solution utility to extract the value of the problem parameter p and
the corresponding Floquet multipliers from each stored solution file and compare to
the theoretical prediction.

4. Repeat the analysis for the case of the harmonically excited linear oscillator

ẋ1 = x2, ẋ2 = −x2 − px1 + cosωt

under variations in the excitation frequency ω. Compare the numerical results to the
corresponding theoretical predictions.

3 Nonlinear hardening – bistable

The nonautonomous dynamical system given by the vector field

F (t, x, p) =

(
x2

−dx2 − x1 − x31 + A cos (2πt/T)

)
(6)

in terms of the vector of state variables x = (x1, x2) ∈ R2 and the vector of problem
parameters p = (T,A, d) ∈ R3 represents the response of a hardening nonlinear oscillator to
harmonic excitation with period T . In particular, larger excitation amplitudes are associated
with the onset of bistability, i.e., intervals in excitation frequency with coexisting stable
steady-state responses.

We encode the vector field and its Jacobians in the functions bistable, bistable_dx,
bistable_dp, and bistable_dt shown below.

6

function y = bistable(t, x, p)

x1 = x(1,:);
x2 = x(2,:);
p1 = p(1,:);
p2 = p(2,:);
p3 = p(3,:);

y(1,:) = x2;
y(2,:) = -p3.*x2-x1-x1.^3+p2.*cos(2*pi./p1.*t);

end

function J = bistable_dx(t, x, p)

x1 = x(1,:);
p3 = p(3,:);

J = zeros(2,2,numel(x1));
J(1,2,:) = 1;
J(2,1,:) = -1-3*x1.^2;
J(2,2,:) = -p3;

end

function J = bistable_dp(t, x, p)

x2 = x(2,:);
p1 = p(1,:);
p2 = p(2,:);

J = zeros(2,3,numel(p1));
J(2,1,:) = 2*pi./p1.^2.*p2.*sin(2*pi./p1.*t);
J(2,2,:) = cos(2*pi./p1.*t);
J(2,3,:) = -x2;

end

function Jt = bistable_dt(t, x, p)

p1 = p(1,:);
p2 = p(2,:);

Jt = zeros(2,numel(t));
Jt(2,:) = -2*pi*p2./p1.*sin(2*pi./p1.*t);

end

An approximate periodic orbit may now be obtained using the ode45 matlab integrator.

>> p0 = [2*pi; 0.015; 0.04];
>> [~, x0] = ode45(@(t,x) bistable(t,x,p0), [0 500*pi], [0; 1]);
>> [t0 x0] = ode45(@(t,x) bistable(t,x,p0), [0 2*pi], x0(end,:)’);

7

The following sequence of commands then encodes a periodic orbit continuation problem.

>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);
>> funcs = {@bistable, @bistable_dx, @bistable_dp, @bistable_dt};
>> coll_args = [funcs, {t0, x0, {’T’ ’A’ ’d’}, p0}];
>> prob = ode_isol2po(prob, ’’, coll_args{:});

Notably, this does not recognize that the orbit period must equal an integer multiple of the
excitation period T . To this end, the following commands constrain the interval length to
equal the value of the first problem parameter.

>> [data uidx] = coco_get_func_data(prob, ’po.orb.coll’, ’data’, ’uidx’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_glue(prob, ’glue’, uidx(maps.T_idx), uidx(maps.p_idx(1)));

The dimensional deficit of the continuation problem encoded thus far equals −1. Continua-
tion under variations in the excitation period then proceeds by releasing both ’po.period’

and ’T’ and allowing these to vary, as shown below.

>> cont_args = {1, {’po.period’ ’T’}, [2*pi/1.3 2*pi/0.7]};
>> bd1 = coco(prob, ’freq_resp’, [], cont_args{:});

The saddle-node bifurcation points found during the previous continuation run may be
used as starting points for continuation along a family of saddle-node bifurcations, as shown
in the following sequence of commands.

>> labs = coco_bd_labs(bd1, ’SN’);
>> prob = coco_prob();
>> prob = coco_set(prob, ’coll’, ’NTST’, 25);
>> prob = ode_SN2SN(prob, ’’, ’freq_resp’, labs(1));
>> [data uidx] = coco_get_func_data(prob, ’po.orb.coll’, ’data’, ’uidx’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_glue(prob, ’glue’, uidx(maps.T_idx), uidx(maps.p_idx(1)));
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 5);
>> cont_args = {1, {’po.period’ ’T’ ’A’}, [2*pi/1.3 2*pi/0.7]};
>> bd2 = coco(prob, ’saddle-node’, [], cont_args{:});

The fold observed along this family corresponds to a cusp bifurcation and the onset of
bistability in the nonlinear frequency response of the hardening oscillator.

The backbone curve for the nonlinear oscillator is the one-dimensional family of periodic
orbits obtained for A = d = 0 and emanating from the limit of zero response amplitude with
period equal to 2π. The following sequence of commands construct a corresponding periodic
orbit continuation problem.

>> t0 = (0:0.01:2*pi)’;
>> x0 = 2e-2*[sin(t0) cos(t0)];
>> p0 = [2*pi; 0; 0];
>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);
>> prob = coco_set(prob, ’po’, ’bifus’, ’off’);
>> funcs = {@bistable, @bistable_dx, @bistable_dp, @bistable_dt};

8

>> coll_args = [funcs, {t0, x0, {’T’ ’A’ ’d’}, p0}];
>> prob = ode_isol2po(prob, ’’, coll_args{:});

Notably, the value of T has no effect on this continuation problem, as long as A = 0, but must
not equal 0 given the division with T encoded in bistable.m. Although the dimensional
deficit of the continuation problem encoded thus far equals 0, this problem is degenerate,
since arbitrary shifts in time are still solutions. We restrict attention to a particular phase
by holding fixed the value of x1 on the initial point on the periodic orbit as shown below.

>> [data uidx] = coco_get_func_data(prob, ’po.orb.coll’, ’data’, ’uidx’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’section’, uidx(maps.x0_idx(1)), ’y0’);
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1);
>> cont_args = { 1, { ’po.period’ ’d’ }, [2*pi/1.3 2*pi/0.7] };
>> coco(prob, ’backbone’, [], cont_args{:});

Note that both ’po.period’ and ’d’ are allowed to vary during continuation, thereby
ensuring a dimensional deficit of 1 corresponding to a one-dimensional solution manifold.
Nevertheless, the value of ’d’ remains approximately 0, since periodic orbits with nonzero
amplitude exist for A = 0 only if d = 0.

Exercises

1. Use the coco_add_event utility to add special points associated with a sequence of
values of A during the continuation along the family of saddle-node bifurcations. Then
use the ode_po2po constructor to start continuation along a family of periodic orbits
from each of the corresponding solutions.

2. Use the L2[0, T] norm stored with the bifurcation data to graph the nonlinear response
obtained in the previous exercises in the same diagram as the backbone as a function
of the orbit period. Can you explain why the backbone appears to closely approximate
the upper saddle-node bifurcation along the hardening response curves?

3. The fold along the family of saddle-node bifurcations corresponds to a cusp bifurcation.
Approximate this bifurcation by three simultaneous instances of periodic orbits in the
bistable case, at the same period of excitation and with similar amplitudes. Perform
continuation of this configuration under simultaneous variation in the excitation period
T , excitation amplitude A, and damping d.

4. Repeat the analysis in this section and the previous exercises for a softening nonlinear
oscillator, for which the sign of the coefficient of the cubic term in the vector field in
positive.

9

4 The Hopf normal form – hopf

Consider the autonomous dynamical system defined by the vector field

F (x, p) =

(
x1(p1 + p2r − r2)− x2
x2(p1 + p2r − r2) + x1

)
, (7)

where r = x21 + x22, in terms of the vector of state variables x = (x1, x2) ∈ R2 and the vector
of problem parameters p = (p1, p2) ∈ R2. This corresponds to a normal form for a Hopf
bifurcation of an equilibrium.

Equation (7) implies the existence of a unique equilibrium at the origin (x1, x2) = (0, 0)
for all values of p1 and p2. The equilibrium is asymptotically stable for p1 < 0 and unstable
for p1 > 0. The critical value p1 = 0 corresponds to a Hopf bifurcation, from which there
emanates a locally unique family of periodic orbits of the form

x1(t) = r∗ cos t, x2 = r∗ sin t (8)

with norm

‖x‖2 =
1

2π

∫ 2π

0

√
x21(t) + x22(t) dt = r∗ (9)

and Floquet multiplier
e2π(p1+3p2r∗2−5r∗4), (10)

where r∗ > 0 is given by

r∗ =
p2 ±

√
p22 + 4p1
2

. (11)

If p2 < 0, the family of periodic orbits exists only for p1 > 0. For each such value of p1,
the periodic orbit is asymptotically stable, and the Hopf bifurcation is supercritical. On the
other hand, for p2 > 0, the Hopf bifurcation is subcritical. In this case, there exists a unique
asymptotically stable periodic orbit for p1 > −p22/4 and no periodic orbits for p1 < −p22/4.
For −p22/4 ≤ p1 ≤ 0, an additional family of unstable periodic orbits is found, which coincides
with the degenerate equilibrium when p1 = 0 and with the limiting orbit on the branch of
asymptotically stable periodic orbits for p1 = −p22/4.

We proceed to encode a vectorized implementation of the vector field in the function
hopf, as shown below

function y = hopf(x, p)

x1 = x(1,:);
x2 = x(2,:);
p1 = p(1,:);
p2 = p(2,:);

r2 = x1.^2+x2.^2;

y(1,:) = x1.*(p1+p2.*r2-r2.^2)-x2;
y(2,:) = x2.*(p1+p2.*r2-r2.^2)+x1;

end

10

In the following sequence of commands, the ode_isol2ep constructor is used to construct
an equilibrium continuation problem.

>> prob = coco_prob();
>> prob = ode_isol2ep(prob, ’’, @hopf, [0; 0], {’p1’ ’p2’}, [-1; 1]);
>> bd1 = coco(prob, ’ep_run’, [], 1, ’p1’, [-1 1]);

As predicted, a Hopf bifurcation occurs at p1 = 0. We invoke the ode_HB2po constructor
to initialize a periodic orbit continuation problem using eigenvalue and eigenvector informa-
tion for the Jacobian of the vector field evaluated at the Hopf bifurcation, stored with the
corresponding solution file.

>> HBlab = coco_bd_labs(bd1, ’HB’);
>> prob = coco_prob();
>> prob = ode_HB2po(prob, ’’, ’ep_run’, HBlab);
>> bd2 = coco(prob, ’po_run’, [], 1, ’p1’, [-1 1]);

We visualize the result of continuation by representing the family of equilibria and periodic
orbits by their corresponding norms.

>> figure(1); clf; hold on; grid on; box on;
>> coco_plot_bd(’ep_run’)
>> coco_plot_bd(’po_run’)
>> hold off

As predicted, the branch of periodic orbits grows from the equilibrium in the direction of
negative values of p1 and turns around at a fold point with p1 ≈ −1/4.

Exercises

1. Repeat the analysis in the example for a sample of positive and negative values of p2
and graph the solution families in a single three-dimensional diagram. Use values of the
’po.test.USTAB’ continuation parameter to distinguish between stable and unstable
periodic orbits.

2. Use the ode_SN2SN constructor to continue along the family of saddle-node bifurcations
found in the example under simultaneous variation in p1 and p2 and add this to the
diagram created in the previous exercise. Can you explain the occurrence of a fold
along the corresponding solution manifold at p1 = p2 = 0?

3. Use the po_read_solution utility to extract the periodic orbits found during continu-
ation in each of the preceding exercises, and graph these together with the theoretical
predictions.

4. Use the ode_HB2po constructor to continue families of periodic orbits from any of the
Hopf bifurcations found in the examples in the ’ep’ toolbox tutorial.

11

5 A web of bifurcations – tor

Consider the autonomous dynamical system given by the vector field

F (x, p) =

 (−(β + ν)x1 + βx2 − A3x
3
1 +B3(x2 − x1)3)/r

βx1 − (β + γ)x2 − x3 −B3(x2 − x1)3
x2

 (12)

in terms of the vector of state variables x = (x1, x2, x3) ∈ R3 and the vector of problem
parameters p = (ν, β, γ, r, A3, B3) ∈ R6. For the equilibrium at the origin, a pair of conjugate
eigenvalues of the Jacobian of the vector field lie on the imaginary axis when ν equals

−2
β2γ + r(r + βγ)(β + γ)

β2 + r(β + γ)2 + 2βγ −
√

(β2 + r(β + γ)(β + γ − 2))(β2 + r(β + γ)(β + γ + 2))
(13)

provided that the radical is real. Along this curve, the remaining eigenvalue equals

2r(β + γ)

β2 + r(β + γ)2 +
√

(β2 + r(β + γ)(β + γ − 2))(β2 + r(β + γ)(β + γ + 2))
(14)

and vanishes when β = −γ, at which point ν = γ.
We encode the vector field and its Jacobians in the functions tor, tor_dx, and tor_dp

as shown below.

function y = tor(x, p)

x1 = x(1,:);
x2 = x(2,:);
x3 = x(3,:);
nu = p(1,:);
be = p(2,:);
ga = p(3,:);
r = p(4,:);
a3 = p(5,:);
b3 = p(6,:);

y(1,:) = (-(be+nu).*x1 + be.*x2 - a3.*x1.^3 + b3.*(x2-x1).^3)./r;
y(2,:) = be.*x1 - (be+ga).*x2 - x3 - b3.*(x2-x1).^3;
y(3,:) = x2;

end

function J = tor_dx(x, p)

x1 = x(1,:);
x2 = x(2,:);
nu = p(1,:);
be = p(2,:);
ga = p(3,:);
r = p(4,:);

12

a3 = p(5,:);
b3 = p(6,:);

J = zeros(3,3,numel(x1));

J(1,1,:) = (-(be+nu)-3*a3.*x1.^2-3*b3.*(x2-x1).^2)./r;
J(1,2,:) = (be+3*b3.*(x2-x1).^2)./r;
J(2,1,:) = be+3*b3.*(x2-x1).^2;
J(2,2,:) = -(be+ga)-3*b3.*(x2-x1).^2;
J(2,3,:) = -1;
J(3,2,:) = 1;

end

function J = tor_dp(x, p)

x1 = x(1,:);
x2 = x(2,:);
nu = p(1,:);
be = p(2,:);
r = p(4,:);
a3 = p(5,:);
b3 = p(6,:);

J = zeros(3,6,numel(x1));

J(1,1,:) = -x1./r;
J(1,2,:) = (-x1+x2)./r;
J(1,4,:) = -(-(be+nu).*x1 + be.*x2 - a3.*x1.^3 + b3.*(x2-x1).^3)./r.^2;
J(1,5,:) = -x1.^3./r;
J(1,6,:) = (x2-x1).^3./r;
J(2,2,:) = x1-x2;
J(2,3,:) = -x2;
J(2,6,:) = -(x2-x1).^3;

end

The following sequence of commands locates a Hopf bifurcation at ν ≈ −0.589 along the
trivial equilibrium branch under variations in ν, in agreement with (13).

>> p0 = [-0.65; 0.5; -0.6; 0.6; 0.3; 0.9];
>> prob = coco_prob();
>> prob = ode_isol2ep(prob, ’’, @tor, [0;0;0], ...

{’nu’, ’be’, ’ga’, ’r’, ’a3’, ’b3’}, p0);
>> bd_ep = coco(prob, ’ep’, [], 1, ’nu’, [-0.65, -0.55]);

Continuation along this family of Hopf bifurcations under simultaneous variations in ν and
β is then accomplished by the following sequence of commands.

>> lab = coco_bd_labs(bd_ep, ’HB’);
>> prob = coco_prob();
>> prob = ode_HB2HB(prob, ’’, ’ep’, lab);
>> bd_hb = coco(prob, ’hb’, [], 1, {’nu’, ’be’}, [-0.65, -0.55]);

13

The screen output shows the existence of a branch point along this family at β = 0.6 and
ν = −0.6, as predicted by the theory.

We rely on the ode_HB2po constructor to continue along a family of periodic orbits ema-
nating from the initial Hopf bifurcation found above.

>> prob = coco_prob();
>> prob = ode_HB2po(prob, ’’, ’ep’, lab);
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 5, ’PtMX’, [100 0]);
>> bd1 = coco(prob, ’po1’, [], 1, {’nu’ ’po.period’}, [-0.65, -0.55]);

The ’PtMX’ setting of the ’cont’ toolbox is used to restrict continuation to one direction
along this family. We can continue along a secondary branch of periodic orbits emanating
from the branch point found along the primary branch by using the ode_BP2po constructor,
as shown below.

>> BPlabs = coco_bd_labs(bd1, ’BP’);
>> prob = coco_prob();
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 5, ’PtMX’, [100 0]);
>> bd2 = coco(prob, ’po2’, ’ode’, ’BP’, ’po’, ’po1’, BPlabs(end), 1, ...

{’nu’ ’po.period’}, [-0.65, -0.55]);

Finally, we continue along a family of torus bifurcations through the point found along the
secondary branch, as shown in the following sequence of commands.

>> TRlabs = coco_bd_labs(bd2, ’TR’);
>> prob = coco_prob();
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 5);
>> bd5 = coco(prob, ’tr1’, ’ode’, ’TR’, ’TR’, ...

’po2’, TRlabs(1), {’nu’ ’po.period’ ’be’}, [-0.65, -0.55]);

This family terminates on the branch point discovered along the curve of Hopf bifurcations
of the trivial equilibrium at the origin.

Exercises

1. Use the ode_SN2SN constructor to continue along a family of saddle-node bifurcations
that intersects the primary branch of periodic orbits under simultaneous variations in
ν, β, and the orbit period.

2. Use the ode_PD2PD constructor to continue along a family of period-doubling bifur-
cations that intersects the secondary branch of periodic orbits under simultaneous
variations in ν, β, and the orbit period.

3. Use the ode_PD2po constructor to continue along a period-doubled family of periodic
orbits that emanates from the period-doubling bifurcation curve found in the previous
exercise.

14

4. The dynamical system considered in this section is analyzed in detail in Freire, E.,
Rodriguez-Luis, A., Gamero, E. and Ponce, E. (1993), “A case study for homoclinic
chaos in an autonomous electronic circuit: A trip from Takens-Bogdanov to Hopf-
Shilnikov,” Physica D 62, 230–253, and also in the manual for the AUTO software
package. Reproduce the results in these sources using the ’ep’ and ’po’ toolbox
constructors.

6 Homoclinic bifurcations – marsden

Consider the autonomous dynamical system3 given by the vector field

F (x, p) =

 p1x1 + x2 + p2x
2
1

−x1 + p1x2 + x2x3
(p21 − 1)x2 − x1 − x3 + x21

 (15)

in terms of the vector of state variables x = (x1, x2, x3) ∈ R3 and the vector of problem
parameters p = (p1, p2) ∈ R2. A vectorized encoding is implemented in the function marsden

shown below.

function y = marsden(x, p)

x1 = x(1,:);
x2 = x(2,:);
x3 = x(3,:);
p1 = p(1,:);
p2 = p(2,:);

y(1,:) = p1.*x1+x2+p2.*x1.^2;
y(2,:) = -x1+p1.*x2+x2.*x3;
y(3,:) = (p1.^2-1).*x2-x1-x3+x1.^2;

end

For this system, the origin is an asymptotically stable equilibrium for p1 < 0 and an unstable
equilibrium for p1 > 0. A pair of complex conjugate eigenvalues of the Jacobian of the vector
field evaluated at the origin crosses the imaginary axis transversally as p1 passes through 0.

A one-dimensional family of equilbria that passes through the Hopf bifurcation at p1 = 0
is obtained using the following sequence of commands.

>> prob = coco_prob();
>> prob = ode_isol2ep(prob, ’’, @marsden, [0; 0; 0], { ’p1’, ’p2’ }, [-1; 6]);
>> bd1 = coco(prob, ’ep_run’, [], 1, ’p1’, [-1 1]);

3The Hopf bifurcation that occurs in this vector field is analyzed in Sect. 4B of Marsden, J.E. and
McCracken, M., The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976

15

The label of the stored solution associated with the Hopf bifurcation can be extracted using
the coco_bd_labs utility.

>> HBlab = coco_bd_labs(bd1, ’HB’);

Continuation along the family of periodic orbits emanating from the Hopf bifurcation is then
achieved using the following sequence of commands.

>> prob = coco_prob();
>> prob = ode_HB2po(prob, ’’, ’ep_run’, HBlab);
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1, ’PtMX’, 50);
>> bd2 = coco(prob, ’po1’, [], 1, {’p1’ ’po.period’}, [-1 1]);

As seen in the screen output, the orbit period increases rapidly as p1 approaches approxi-
mately −0.013, for which an equilibrium is found at (x1, x2, x3) ≈ (−0.25,−0.37, 0.68). We
visualize the time history of the longest-period orbit using the following commands.

>> sol = po_read_solution(’’, ’po1’, 8);
>> plot(sol.tbp, sol.xbp(:,3))

The graph suggests that the periodic orbit passes close to the equilibrium and, possibly,
approximates a homoclinic connecting orbit emanating from this equilibrium.

We proceed to construct an improved periodic-orbit approximation to such a homoclinic
connection using the following sequence of commands.

>> [sol data] = coll_read_solution(’po.orb’, ’po1’, 8);
>> f = marsden(sol.xbp’, repmat(sol.p, [1 size(sol.xbp, 1)]));
>> [mn idx] = min(\\sqrt(sum(f.*f, 1)));
>> scale = 25;
>> T = sol.T;
>> t0 = [sol.tbp(1:idx,1) ; T*(scale-1)+sol.tbp(idx+1:end,1)];
>> x0 = sol.xbp;
>> p0 = sol.p;

The first three commands extract the discretization point corresponding to the minimum
value of the norm of the vector field along the longest-period periodic orbit found in the
above run. We then insert a time segment that is a large multiple of the orbit period
immediately following this discretization point. Continuation with a zero-dimensional atlas
algorithm can now be used to locate a periodic orbit with period equal to its initial value,
i.s., to 25 times the largest period found in the previous run.

>> prob = coco_prob();
>> prob = coco_set(prob, ’coll’, ’NTST’, data.coll.NTST);
>> prob = coco_set(prob, ’po’, ’bifus’, ’off’);
>> prob = ode_isol2po(prob, ’’, @marsden, t0, x0, { ’p1’ ’p2’ }, p0);
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 10);
>> prob = coco_xchg_pars(prob, ’p2’, ’po.period’);
>> coco(prob, ’po2’, [], 0, { ’p1’ ’po.orb.coll.err_TF’ ’po.period’ });

The coco_xchg_pars core utility is here used to assign ’p2’ to the set of active continuation
parameters and ’po.period’ to the set of inactive continuation parameters, thus ensuring

16

that the latter is fixed during root finding. The value of 10 for the ’NAdapt’ setting of the
’cont’ toolbox implies that the trajectory discretization is changed adaptively ten times
before the solution is accepted.

Continuation along a one-dimensional family of periodic orbits of very large and fixed
period is now achieved using the following sequence of commands.

>> prob = coco_prob();
>> prob = coco_set(prob, ’po’, ’bifus’, ’off’);
>> prob = ode_po2po(prob, ’’, ’po2’, 2);
>> prob = coco_xchg_pars(prob, ’p2’, ’po.period’);
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1, ’PtMX’, 50);
>> coco(prob, ’po3’, [], 1, {’p1’ ’p2’ ’po.period’}, [-1 1]);

The collection of associated pairs of numerical values for ’p1’ and ’p2’ provides an approx-
imate sample along a corresponding homoclinic bifurcation curve.

Exercises

1. Repeat the complete analysis for several different values of p2.

2. Repeat the construction of an approximate homoclinic orbit for a larger value of the
scale variable. Graph the time history of several members of the family of high-period
periodic orbits by resetting the independent variable to equal 0 at the point closest to
the equilibrium.

3. Use the ode_SN2SN constructor to continue along the family of saddle-node bifurcations
detected in the example. Graph this bifurcation curve in the same diagram as the
homoclinic bifurcation curve.

4. Use a combination of the ’coll’ and ’ep’ toolboxes to find a single-segment approx-
imation to the homoclinic connecting orbit by imposing suitable boundary conditions
expressed in terms of the stable and unstable eigenspaces of the corresponding equi-
librium.

7 Canard explosions – canard

Consider the autonomous dynamical system given by the vector field

F (x, p) =

(
ε(a− x2)

x1 + x2 − x32

)
(16)

in terms of the vector of state variables x = (x1, x2) ∈ R2 and the vector of problem
parameters p = (a, ε) ∈ R2. Equilibria occur at (a3/3− a, a) and undergo Hopf bifurcations
when a = ±1.

17

Continuation along this branch of equilibria is achieved using the following sequence of
commands.

>> vanderpol = @(x,p) [p(2,:).*(p(1,:)-x(2,:)); x(1,:)+x(2,:)-x(2,:).^3/3];
>> pnames = { ’a’ ’eps’ };
>> prob = coco_prob();
>> prob = ode_isol2ep(prob, ’’, vanderpol, [0; 0], pnames, [0; 0.01]);
>> bd1 = coco(prob, ’ep_run’, [], 1, ’a’, [-1.1 1.1]);

We continue along the family of periodic orbits emanating from the Hopf bifurcation at
a = −1 using the following sequence of commands.

>> HBlabs = coco_bd_labs(bd1, ’HB’);
>> prob = coco_prob();
>> prob = coco_set(prob, ’po’, ’bifus’, false);
>> prob = ode_HB2po(prob, ’’, ’ep_run’, HBlabs(1));
>> prob = coco_set(prob, ’cont’, ’PtMX’, 1000, ’NPR’, 100);
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1, ’h_max’, 4, ’bi_direct’, false);
>> cont_args = { 1, { ’po.period’ ’a’ }, { [1 1000] [-1.1 0] } };
>> coco(prob, ’po_run’, [], cont_args{:});

As seen in the screen output, the period exhibits a dramatic increase in magnitude over an
extremely small interval of variation in the problem parameter a. This is known as a canard
explosion and the periodic orbits along this near-“vertical” branch are members of a canard
family.

Exercises

1. Repeat the construction of a canard family by continuation along the family of periodic
orbits emanating from the Hopf bifurcation at a = 1. Explain the symmetry with the
case a = −1.

2. Repeat the analysis for a smaller value of ε and compare the time histories for various
members of the corresponding canard family with those obtained for ε = 0.01. What
happens when you increase the value of ε?

3. Use continuation to determine the dependence on ε of the value of a corresponding to
a canard explosion and compare this to the theoretical prediction in Freire, Gamero,
and Rodríguez-Luis, “First-Order Approximations for Canard Periodic Orbits in a van
der Pol Electronic Oscillator,” Applied Mathematics Letters 12, pp. 73-78, 1999.

4. Use the ’po’ toolbox constructors to explore the occurrence of canards and period-
doubling cascades of canards in the slow-fast dynamical system considered in Sekikawa
et al., “Period-doubling cascades of canards from the extended Boenhoeffer-van der Pol
oscillator,” Physics Letters A 374(36), pp. 3745–3751, 2010.

18

8 A piecewise-smooth dynamical system – piecewise

Let r =
√
x21 + x22 and consider the pair of vector fields

F (x, p; left) =

(
−x2 + (1− r)x1
x1 + (1− r)x2

)
(17)

and
F (x, p; right) =

(
α(β − r)x1 − (γ + β − r)x2
α(β − r)x2 + (γ + β − r)x1

)
(18)

in terms of the vector of state variables x = (x1, x2) ∈ R2 and vector of problem param-
eters p = (α, β, γ) ∈ R3. Trajectory segments governed by the two vector fields may be
parameterized as

x(t) = r(t)

(
cos θ(t)
sin θ(t)

)
(19)

in terms of the corresponding polar coordinates r(t) and θ(t), satisfying the differential
equations

ṙ = r(1− r), θ̇ = 1 (20)

in the case of F (x, p; left), and

ṙ = αr(β − r), θ̇ = γ + β − r (21)

in the case of F (x, p; right), both of which may be solved explicitly in terms of the corre-
sponding initial values r0 and θ0. In particular, for positive α, the radial distance grows in
time if r0 < 1 for F (x, p; left) and r0 < β for F (x, p; right). Similarly, the radial distance
decays in time if r0 > 1 for F (x, p; left) and r0 > β for F (x, p; right). As long as γ > 0, it
follows that closed curves in state space inside the annulus bounded by r = 1 and r = β
may be obtained by stitching together trajectory segments for each of the two vector fields.

Consider, for example, continuation along families of closed curves obtained by stitch-
ing together a trajectory segment for F (x, p; left) on x1 ≤ 0 and a trajectory segment for
F (x, p; right) on x1 ≥ 0. To this end, we encode the two vector fields and their Jacobians in
the functions piecewise, piecewise_dx, and piecewise_dp, as shown below.

function y = piecewise(x, p, mode)

x1 = x(1,:);
x2 = x(2,:);

r = sqrt(x1.^2+x2.^2);

switch mode
case ’left’
y(1,:) = (1-r).*x1-x2;
y(2,:) = x1+(1-r).*x2;

case ’right’
al = p(1,:);

19

be = p(2,:);
ga = p(3,:);

y(1,:) = al.*(be-r).*x1-(ga+be-r).*x2;
y(2,:) = al.*(be-r).*x2+(ga+be-r).*x1;

end

end

function J = piecewise_dx(x, p, mode)

x1 = x(1,:);
x2 = x(2,:);

r = sqrt(x1.^2+x2.^2);
rx = x1./r;
ry = x2./r;

J = zeros(2,2,numel(r));
switch mode
case ’left’
J(1,1,:) = 1-r-x1.*rx;
J(1,2,:) = -1-x1.*ry;
J(2,1,:) = 1-x2.*rx;
J(2,2,:) = 1-r- x2.*ry;

case ’right’
al = p(1,:);
be = p(2,:);
ga = p(3,:);

al_x = al.*x1-x2;
al_y = al.*x2+x1;

J(1,1,:) = al.*be-al.*r-rx.*al_x;
J(1,2,:) = -be-ga+r-ry.*al_x;
J(2,1,:) = be+ga-r-rx.*al_y;
J(2,2,:) = al.*be-al.*r-ry.*al_y;

end

end

function J = piecewise_dp(x, p, mode)

x1 = x(1,:);
x2 = x(2,:);

r = sqrt(x1.^2+x2.^2);

J = zeros(2,3,numel(r));
switch mode
case ’right’
al = p(1,:);
be = p(2,:);

20

J(1,1,:) = (be-r).*x1;
J(1,2,:) = al.*x1-x2;
J(1,3,:) = -x2;
J(2,1,:) = (be-r).*x2;
J(2,2,:) = al.*x2+x1;
J(2,3,:) = x1;

end

end

The assignments

>> stop = @(x,p,e) x(1);
>> stop_dx = @(x,p,e) [1 0];
>> stop_dp = @(x,p,e) zeros(1,3);
>> jump = @(x,p,r) x;
>> jump_dx = @(x,p,r) eye(2);
>> jump_dp = @(x,p,r) zeros(2,3);

encode the event function h(x, p; boundary) = x1 and its Jacobians, as well as the reset
function g(x, p; switch) = x and its Jacobians.

Continuation along the desired family under variations in β then results from the following
sequence of commands

>> p0 = [1; 2; 1.5];
>> modes = {’left’ ’right’};
>> events = {’boundary’ ’boundary’};
>> resets = {’switch’ ’switch’};
>> t0 = linspace(0, pi, 100)’;
>> x1 = [-sin(t0) 0.5+cos(t0)];
>> x2 = [sin(t0) 0.5-cos(t0)];
>> t0 = {t0 0.5*t0};
>> x0 = {x1 x2};
>> prob = coco_prob();
>> prob = coco_set(prob, ’hspo.orb.bvp.seg1.coll’, ’NTST’, 10, ’NCOL’, 6);
>> prob = coco_set(prob, ’hspo.orb.bvp.seg2.coll’, ’NTST’, 20, ’NCOL’, 4);
>> prob = ode_isol2hspo(prob, ’’, {@piecewise, stop, jump}, ...

{@piecewise_dx, stop_dx, jump_dx}, {@piecewise_dp, stop_dp, jump_dp}, ...
modes, events, resets, t0, x0, {’al’ ’be’ ’ga’}, p0);

>> prob = coco_set(prob, ’cont’, ’NAdapt’, 5);
>> coco(prob, ’pw1’, [], 1, ’be’, [0 5]);

Here, the arguments of the ode_isol2hspo constructor include arrays of function handles,
and arrays that identify the choice of vector field, event function, and reset function corre-
sponding to each of the two trajectory segments. The two calls to coco_set assigns segment-
specific values for the mesh discretization parameters, referencing the corresponding instances
of the ’coll’ toolbox by their toolbox instance identifiers.

21

Exercises

1. Use the ode_hspo2hspo toolbox constructor to restart continuation under variations
in α from one of the solutions found during the ’pw1’ run in the text.

2. Use the hspo_read_solution toolbox utility to extract trajectory information for indi-
vidual solutions and confirm the prediction regarding their location within the annulus
bounded by r = 1 and r = β.

3. The two-segment closed curves obtained during continuation correspond to periodic
orbits of a piecewise-smooth dynamical system with dynamics governed by F (x, p; left)
on x1 ≤ 0 and a trajectory segment for F (x, p; right) on x1 ≥ 0. Use the explicit
solution to the differential equations in polar coordinates to predict the corresponding
nontrivial Floquet multiplier and compare this prediction to the numerical values stored
in chart data by the ’po’ toolbox.

4. Perform continuation along closed curves corresponding to alternative stitching se-
quences with two or more trajectory segments. Repeat the stability analysis from the
previous exercise and compare to the numerical predictions.

9 An impact oscillator – impact

Consider the autonomous dynamical system governed by the vector field

F (x, p) =

 x2
−kx1 − cx2 + A cosx3

ω

 (22)

in terms of the vector of state variables x = (x1, x2, x3) ∈ R2 × S and vector of problem
parameters p = (k, c, A, ω, d, e) ∈ R6, with state resets given by the reset map

g(x, p; bounce) =

 x1
−ex2
x3

 (23)

associated with transversal intersections with the zero-level surface of the event function

h(x, p; impact) = d− x1, (24)

and by the reset map

g(x, p; phase) =

 x1
x2

x3 − 2π

 (25)

22

associated with transversal intersections with the zero-level surface of the event function

h(x, p; phase) = π − x3. (26)

A periodic orbit of this dynamical system is said to be impacting if it includes a transi-
tion governed by g(x, p; bounce) and to be grazing if it intersects the zero-level surface of
h(x, p; impact) tangentially, i.e., at a point where x2 = 0.

We may perform continuation along a family of impacting periodic orbits while moni-
toring for a grazing intersection. To this end, we encode the vector field and the event and
reset functions in the impact, impact_events, and impact_resets functions shown below.

function y = impact(x, p, mode)

x1 = x(1,:);
x2 = x(2,:);
x3 = x(3,:);
p1 = p(1,:);
p2 = p(2,:);
p3 = p(3,:);
p4 = p(4,:);

y(1,:) = x2;
y(2,:) = p3.*cos(x3)-p2.*x2-p1.*x1;
y(3,:) = p4;

end

function y = impact_events(x, p, event)

switch event
case ’impact’
y = p(5,:)-x(1,:);

case ’phase’
y = pi-x(3,:);

end

end

function y = impact_resets(x, p, reset)

y = x;

switch reset
case ’bounce’
y(2,:) = -p(6,:).*y(2,:);

case ’phase’
y(3,:) = y(3,:)-2*pi;

end

end

The following sequence of commands then construct a two-segment impacting periodic-orbit
continuation problem, with initial solution guess obtained by forward simulation.

23

>> p0 = [1; 0.1; 1; 1; 1; 0.8];
>> modes = {’free’ ’free’};
>> events = {’impact’ ’phase’};
>> resets = {’bounce’ ’phase’};
>> f = @(t, x) impact(x, p0, ’free’);
>> [t1, x1] = ode45(f, [0 3.2], [-0.98; -0.29; -pi]);
>> [t2, x2] = ode45(f, [0 3.1], [1; -1.36; 0.076]);
>> t0 = {t1 t2};
>> x0 = {x1 x2};
>> hspo_args = {{@impact, @impact_events, @impact_resets}, ...

modes, events, resets, t0, x0, {’k’ ’c’ ’A’ ’w’ ’d’ ’e’}, p0};
>> prob = coco_prob();
>> prob = coco_set(prob, ’hspo’, ’bifus’, false);
>> prob = ode_isol2hspo(prob, ’’, hspo_args{:});

Here, the call to coco_set turns off the monitoring of Floquet multipliers and bifurcation
detection. This avoids the singularity in the sensitivity matrix associated with grazing
contact. In order to support detection of grazing contact, we extract the second component
of the initial end point of the second trajectory segment and monitor changes in its sign, as
shown below.

>> [data, uidx] = coco_get_func_data(prob, ’hspo.orb.bvp.seg2.coll’, ...
’data’, ’uidx’);

>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’grazing’, uidx(maps.x0_idx(2)), ...

’graze’, ’active’);
>> prob = coco_add_event(prob, ’GR’, ’graze’, 0);
>> prob = coco_set(prob, ’cont’, ’PtMX’, 100, ’NAdapt’, 5);
>> bd1 = coco(prob, ’impact1’, [], {’A’ ’graze’}, [0.01 1]);

As the continuation problem is implemented in terms of a constrained multi-segment boundary-
value problem, the analysis produces solutions that are contained entirely in the x1 ≤ d half
space, as well as solutions that cross the x1 = d boundary, even though the latter violate the
association of crossings of this boundary with the application of g(x, p; bounce).

Exercises

1. Analyze the following sequence of commands and describe the corresponding family of
periodic orbits.

>> labgr = coco_bd_labs(bd1, ’GR’);
>> prob = coco_prob();
>> prob = coco_set(prob, ’hspo’, ’bifus’, false);
>> prob = ode_hspo2hspo(prob, ’’, ’impact1’, labgr);
>> [data, uidx] = coco_get_func_data(prob, ’hspo.orb.bvp.seg2.coll’, ...

’data’, ’uidx’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’grazing’, uidx(maps.x0_idx(2)), ...

’graze’, ’active’);
>> prob = coco_xchg_pars(prob, ’graze’, ’A’);

24

>> prob = coco_set(prob, ’cont’, ’PtMX’, 100, ’NAdapt’, 5);
>> coco(prob, ’impact2’, [], {’w’ ’A’ ’graze’}, {[] [0 1]});

2. Use the ode_hspo2hspo constructor to restart continuation along several families of
two-segment impacting periodic orbits from select solutions obtained during continua-
tion in the previous exercise. Repeat this analysis for different numerical combinations
of k and c.

3. Associate the identity state reset with transversal intersections with the zero-level
surface of the event function h(x, p;minsep) = x2, and perform continuation along a
family of two-segment non-impacting periodic orbits starting from one of the solutions
obtained in the first exercise.

4. Use the ode_isol2hspo and ode_hspo2hspo constructors to repeat the analysis of
multi-segment periodic orbits performed in Examples 9.3 and 9.4 of Recipes for Con-
tinuation (cf. the stickslip demo).

10 Bang-bang excitation – bangbang

Consider the autonomous dynamical system governed by the nonlinear vector fields

F (x, p; pos) =

 x2
A− λx2 − αx1 − εx31

1

 (27)

and

F (x, p; neg) =

 x2
−A− λx2 − αx1 − εx31

1

 (28)

in terms of a vector of state variables x = (x1, x2, x3) ∈ R2× [0, π/ω] and a vector of problem
parameters p = (λ, α, ε, A, ω) ∈ R5. We look for two-segment periodic orbits, where the first
segment is governed by F (x, p; neg) and the second is governed by F (x, p; pos), and where
transitions occur when x3 reaches π/ω and is reset to 0.

We encode the vector fields and their Jacobians in the functions duff, duff_DFDX, and
duff_DFDP, as shown below.

function y = duff(x, p, mode)

x1 = x(1,:);
x2 = x(2,:);
la = p(1,:);
al = p(2,:);
ep = p(3,:);

25

A = p(4,:);
om = p(5,:);

switch mode
case ’neg’
A=-A;

end

y(1,:) = x2;
y(2,:) = A-la.*x2-al.*x1-ep.*x1.^3;
y(3,:) = ones(1,numel(om));

end

function J = duff_DFDX(x, p, mode)

x1 = x(1,:);
la = p(1,:);
al = p(2,:);
ep = p(3,:);

J = zeros(3,3,numel(x1));
J(1,2,:) = 1;
J(2,1,:) = -al-3*ep.*x1.^2;
J(2,2,:) = -la;

end

function J = duff_DFDP(x, p, mode)

x1 = x(1,:);
x2 = x(2,:);

J = zeros(3,5,numel(x1));
J(2,1,:) = -x2;
J(2,2,:) = -x1;
J(2,3,:) = -x1.^3;
J(2,4,:) = 1;
switch mode
case ’neg’
J(2,4,:) = -1;

end

end

We construct an initial solution guess, allowing the transient dependence on initial conditions
to die out, by repeated calls to ode45 as shown in the following sequence of commands.

>> w0 = 1.1;
>> p0 = [0.2; 1; 1; 26; w0];
>> x0 = [0; 0; 0];
>> for i=1:10

[~, y0] = ode45(@(t,x) duff(x,p0,’neg’), [0 pi/w0], x0);
x0 = y0(end,:)’;

26

[~, y1] = ode45(@(t,x) duff(x,p0,’pos’), [0 pi/w0], x0);
x0 = y1(end,:)’;

end
>> x0 = [x0(1:2);0];
>> [t1, x1] = ode45(@(t,x) duff(x,p0,’neg’), [0 pi/w0], x0);
>> x0 = [x1(end,1:2) 0]’;
>> [t2, x2] = ode45(@(t,x) duff(x,p0,’pos’), [0 pi/w0], x0);

We rely on the ode_isol2hspo constructor to build the corresponding continuation problem,
as shown below.

>> modes = {’neg’ ’pos’};
>> events = {’phase’ ’phase’};
>> resets = {’phase’ ’phase’};
>> t0 = {t1 t2};
>> x0 = {x1 x2};
>> duff_events = @(x,p,~) pi/p(5)-x(3);
>> duff_events_dx = @(x,p,~) [0 0 -1];
>> duff_events_dp = @(x,p,~) [0 0 0 0 -pi/p(5)^2];
>> duff_resets = @(x,p,~) [x(1);x(2);0];
>> duff_resets_dx = @(x,p,~) [1 0 0; 0 1 0; 0 0 0];
>> duff_resets_dp = @(x,p,~) zeros(3,5);
>> prob = coco_prob();
>> prob = coco_set(prob, ’coll’, ’NTST’, 200);
>> prob = ode_isol2hspo(prob, ’’, {@duff, duff_events, duff_resets}, ...

{@duff_DFDX, duff_events_dx, duff_resets_dx}, ...
{@duff_DFDP, duff_events_dp, duff_resets_dp}, ...
modes, events, resets, t0, x0, {’la’ ’al’ ’eps’ ’A’ ’om’}, p0);

Continuation then proceeds according to the settings for the ’cont’ toolbox assigned by a
call to coco_set.

>> prob = coco_set(prob, ’cont’, ’h’, 2, ’h_max’, 20, ’PtMX’, 200, ’NAdapt’, 1);
>> coco(prob, ’run1’, [], 1, ’om’, [0.8 1.5]);

Several branch points and saddle-node bifurcations found during continuation may be used to
restart continuation along secondary branches of (further constrained) two-segment periodic
orbits.

Exercises

1. Use the ode_BP2hspo constructor to restart continuation along a secondary branch
emanating from one of the branch points found in the original run.

2. Use the ode_SN2SN constructor to restart continuation along a family of saddle-node
bifurcations of two-segment periodic orbits emanating from one of the saddle-node
bifurcations found in the original run.

3. Use the ode_PD2PD constructor to restart continuation along a family of period-doubling

27

bifurcations of two-segment periodic orbits emanating from the period-doubling bifur-
cations found in the first exercise.

4. Use the ode_PD2hspo constructor to restart continuation along a family of four-segment
periodic orbits emanating from one of the period-doubling bifurcations found in the
first exercise.

11 Optimization – int_optim

Consider the problem of finding stationary points of the functional

x(t) 7→
∫ T

0

x1(t)

1 + x22(t)
dt (29)

evaluated on a family of period-T solutions of the autonomous dynamical system4

ẋ1 =
1

p1

(
−p4

(
x31
3
− x1

)
+
x3 − x1
p2

− x2
)
, ẋ2 = x1 − p3 ẋ3 = −x3 − x1

p2
(30)

emanating from a Hopf bifurcation along the equilibrium family

x1 = p3, x2 =
p3p4

3
(3− p23), x3 = p3. (31)

We implement the equilibrium continuation problem in coco using the following call to
the ode_isol2ep constructor:

>> funcs = {@mvdP, @mvdP_dx, @mvdP_dp, @mvdP_dxdx, @mvdP_dxdp, @mvdP_dpdp};
>> x0 = [0;0;0];
>> pnames = {’p1’, ’p2’, ’p3’, ’p4’};
>> p0 = [0.5; 4; 0; 2];
>> prob = coco_prob();
>> prob = ode_isol2ep(prob, ’’, funcs{:}, x0, pnames, p0);

where the encodings in @mdvP, @mvdP_dx, @mvdP_dp, @mvdP_dxdx, @mvdP_dxdp, and @mvdP_dpdp

are given below.

function y = mvdP(x, p)

x1 = x(1,:);
x2 = x(2,:);
x3 = x(3,:);
p1 = p(1,:);
p2 = p(2,:);

4This modified Van-der-Pol model of a nonlinear electronic circuit is analyzed in Sect. 2.5 of Rodríguez
Luis, Bifurcaciones Multiparamétricas en Osciladores Autónomos, PhD dissertation, Universidad de Sevilla,
1991.

28

p3 = p(3,:);
p4 = p(4,:);

y(1,:) = (-p4.*(x1.^3/3-x1) + (x3-x1)./p2 - x2)./p1;
y(2,:) = x1-p3;
y(3,:) = -(x3-x1)./p2;

end

function J = mvdP_dx(x, p)

x1 = x(1,:);
p1 = p(1,:);
p2 = p(2,:);
p4 = p(4,:);

J = zeros(3,3,numel(x1));
J(1,1,:) = (-p4.*(x1.^2-1)-1./p2)./p1;
J(2,1,:) = 1;
J(3,1,:) = 1./p2;
J(1,2,:) = -1./p1;
J(1,3,:) = 1./p1./p2;
J(3,3,:) = -1./p2;

end

function J = mvdP_dp(x, p)

x1 = x(1,:);
x2 = x(2,:);
x3 = x(3,:);
p1 = p(1,:);
p2 = p(2,:);
p4 = p(4,:);

J = zeros(3,4,numel(x1));
J(1,1,:) = (p4.*(x1.^3/3-x1) - (x3-x1)./p2 + x2)./p1.^2;
J(1,2,:) = (x1-x3)./p1./p2.^2;
J(3,2,:) = (x3-x1)./p2.^2;
J(2,3,:) = -1;
J(1,4,:) = (x1-x1.^3/3)./p1;

end

function dJ = mvdP_dxdx(x, p)

x1 = x(1,:);
p1 = p(1,:);
p4 = p(4,:);

dJ = zeros(3,3,3,numel(1));
dJ(1,1,1,:) = -2*p4.*x1./p1;

29

end

function dJ = mvdP_dxdp(x, p)

x1 = x(1,:);
p1 = p(1,:);
p2 = p(2,:);
p4 = p(4,:);

dJ = zeros(3,3,4,numel(x1));
dJ(1,1,1,:) = (p4*(x1.^2-1)+1./p2)./p1.^2;
dJ(1,1,2,:) = 1./p1./p2.^2;
dJ(3,1,2,:) = -1./p2.^2;
dJ(1,1,4,:) = (1-x1.^2)./p1;
dJ(1,2,1,:) = 1./p1.^2;
dJ(1,3,1,:) = -1./p1.^2./p2;
dJ(1,3,2,:) = -1./p1./p2.^2;
dJ(3,3,2,:) = 1./p2.^2;

end

function dJ = mvdP_dpdp(x, p)

x1 = x(1,:);
x2 = x(2,:);
x3 = x(3,:);
p1 = p(1,:);
p2 = p(2,:);
p4 = p(4,:);

dJ = zeros(3,4,4,numel(x1));
dJ(1,1,1,:) = 2*(-p4.*(x1.^3/3-x1) + (x3-x1)./p2 - x2)./p1.^3;
dJ(1,2,1,:) = (x3-x1)./p1.^2./p2.^2;
dJ(1,4,1,:) = (x1.^3/3-x1)./p1.^2;
dJ(1,2,2,:) = 2*(x3-x1)./p1./p2.^3;
dJ(3,2,2,:) = 2*(x1-x3)./p2.^3;
dJ(1,1,2,:) = (x3-x1)./p1.^2./p2.^2;
dJ(1,1,4,:) = (x1.^3/3-x1)./p1.^2;

end

We trace a one-dimensional solution manifold under variations in p3 using the coco entry-
point function, as shown below.

>> bd1 = coco(prob, ’ep_run’, [], 1, ’p3’, [0 1]);

From the screen output, we note the detection of a Hopf bifurcation at p3 ≈ 0.93756. The
ode_HB2po constructor can be used to build a periodic-orbit continuation problem for the
family of orbits emanating from this bifurcation point, as shown in the next sequence of
commands.

>> HBlab = coco_bd_labs(bd1, ’HB’);
>> prob = coco_prob();

30

>> prob = coco_set(prob, ’coll’, ’NTST’, 20);
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1, ’PtMX’, [0 100]);
>> prob = coco_set(prob, ’po’, ’bifus’, false);
>> prob = ode_HB2po(prob, ’’, ’ep_run’, HBlab);

Here, we use an initial discretization with 20 mesh intervals and allow for an adaptive remesh-
ing after each complete step of continuation. We restrict computation to 100 complete steps
along one of the directions on the corresponding solution manifold, and turn off bifurcation
detection by setting the ’bifus’ option of the ’po’ toolbox to false.

We proceed to append a monitor function corresponding to an arbitrary integral func-
tional of the form

x(t) 7→
∫ T

0

g(x(t)) dt (32)

using the sequence of commands shown below.

>>[fdata, uidx] = coco_get_func_data(prob, ’po.orb.coll’, ’data’, ’uidx’);
>> data = int_init_data(fdata, ’po.orb’);
>> maps = data.coll_seg.maps;
>> uidx = uidx([maps.xbp_idx; maps.T_idx]);
>> prob = coco_add_func(prob, ’po.orb.int’, @int, @int_du, data, ...

’inactive’, ’po.orb.int’, ’uidx’, uidx, ’remesh’, @int_remesh);

In the encoding of int, we rely on the trajectory discretization stored in the function data
structure for the corresponding ’coll’ trajectory segment to approximate the integral func-
tional by quadrature on the collocation nodes.

function [data, y] = int(prob, data, u)

pr = data.pr;
maps = pr.coll_seg.maps;
mesh = pr.coll_seg.mesh;

T = u(pr.T_idx);
x = u(pr.xbp_idx);

xcn = reshape(maps.W*x, maps.x_shp);
gcn = pr.ghan(xcn);
gcn = mesh.gka.*gcn;

y = (0.5*T/maps.NTST)*mesh.gwt*gcn’;

end

The corresponding Jacobian is encoded in int_du as shown below.

function [data, J] = int_du(prob, data, u)

pr = data.pr;
maps = pr.coll_seg.maps;
mesh = pr.coll_seg.mesh;

T = u(pr.T_idx);

31

x = u(pr.xbp_idx);

xcn = reshape(maps.W*x, maps.x_shp);
gcn = pr.ghan(xcn);
gcn = mesh.gka.*gcn;

gdxcn = pr.ghan_dx(xcn);
gdxcn = mesh.gdxka.*gdxcn;
gdxcn = sparse(maps.gdxrows, maps.gdxcols, gdxcn(:));

J_xbp = (0.5*T/maps.NTST)*mesh.gwt*gdxcn*maps.W;
J_T = (0.5/maps.NTST)*mesh.gwt*gcn’;

J = [J_xbp J_T];

end

We initialize the associated function data structure using the call to the int_init_data

function whose encoding is shown below.

function data = int_init_data(fdata, oid)

data.coll_seg = fdata.coll_seg;
data.xbp_idx = data.coll_seg.maps.xbp_idx;
data.T_idx = data.xbp_idx(end) + 1;
data.ghan = @ghan;
data.ghan_dx = @ghan_dx;
data.oid = oid;

data = coco_func_data(data);

end

Encodings of ghan and ghan_dx corresponding to the specific integrand of interest are shown
below.

function y = ghan(x)

x1 = x(1,:);
x2 = x(2,:);

y = x1./(1+x2.^2);

end

function J = ghan_dx(x)

x1 = x(1,:);
x2 = x(2,:);

J = zeros(1,3,numel(x1));
J(1,1,:) = 1./(1+x2.^2);
J(1,2,:) = -2*x1.*x2./(1+x2.^2).^2;

32

end

Finally, in recognition of the adaptive updates to the trajectory discretization, we include
the ’remesh’ flag in the call to coco_add_func, followed by a function handle to the following
encoding that makes corresponding updates to the ’po.orb.int’ function data structure and
function dependency index set.

function [prob, status, xtr] = int_remesh(prob, data, chart, old_u, old_V)

cid = coco_get_id(data.oid, ’coll’);
[fdata, uidx] = coco_get_func_data(prob, cid, ’data’, ’uidx’);
data = int_init_data(fdata, data.oid);
maps = data.coll_seg.maps;
uidx = uidx([maps.xbp_idx; maps.T_idx]);

xtr = [];
prob = coco_change_func(prob, data, ’uidx’, uidx);
status = ’success’;

end

Before proceeding to consider an implementation of the corresponding adjoint problem,
let x̂(τ) = x(t(τ)) be obtained from the transformation

t(τ) = T

∫ τ

0

κ(s) ds, (33)

in terms of a given positive function κ(s) that satisfies the condition∫ 1

0

κ(s) ds = 1. (34)

It follows that

˙̂x1 =
Tκ

p1

(
−p4

(
x̂31
3
− x̂1

)
+
x̂3 − x̂1
p2

− x̂2
)
, ˙̂x2 = Tκ (x̂1 − p3) ˙̂x3 = −Tκx̂3 − x̂1

p2
(35)

while the functional now takes the form

x̂(t) 7→ T

∫ 1

0

κ(τ)
x̂1(τ)

1 + x̂22(τ)
dτ. (36)

33

Next, given some function x̂0(τ), consider the Lagrangian

L (x̂(τ), p, T, µp, µint, `ode(τ), `bc, `phase, ηp, ηint) = µint

+

∫ 1

0

`ode,1(τ)

(
˙̂x1(τ)− Tκ(τ)

p1

(
− p4

(
x̂31(τ)

3
− x̂1(τ)

)
+

x̂3(τ)− x̂1(τ)

p2
− x̂2(τ)

))
dτ

+

∫ 1

0

`ode,2(τ)
(

˙̂x2(τ)− Tκ(τ) (x̂1(τ)− p3)
)

dτ

+

∫ 1

0

`ode,3(τ)

(
˙̂x3(τ) + Tκ(τ)

x̂3(τ)− x̂1(τ)

p2

)
dτ

+ `>bc (x̂(1)− x̂(0)) + `phase

∫ 1

0

˙̂x0(τ)>x̂(τ) dτ

+ ηint

(
T

∫ 1

0

κ(τ)
x̂1(τ)

1 + x̂22(τ)
dτ − µint

)
+ η>p (p− µp) (37)

in terms of the continuation parameters µp and µint, and the Lagrange multipliers `ode(τ), `bc,
`phase, ηp, and ηint. Necessary conditions for stationary points along the constraint manifold
correspond to points (x̂(τ), p, T, µp, µint, `ode(τ), `bc, `phase, ηp, ηint) for which δL = 0 for any
infinitesimal variations δx̂(τ), δp, δT , δµp, δµint, δ`ode(τ), δ`bc,δ`phase, δηp, δηint. For example,
at a stationary point, variations with respect to `phase yield the integral phase condition∫ 1

0

˙̂x0(τ)>x̂(τ) dτ = 0, (38)

while variations with respect to µint and µp show that ηint = 1 and ηp = 0.
Variations with respect to x̂(τ), p, and T yield adjoint conditions that are linear in the

Lagrange multipliers. Terms associated with the components of `ode(τ) and `bc, as well as
the scalar `phase, are appended without difficulty to the continuation problem by invoking
the adjt_isol2po constructor, as shown below.

>> prob = adjt_isol2po(prob, ’’);

In the absence of a pre-packaged constructor, we append the corresponding terms associated
with the integral functional using the following sequence of commands:

>> [fdata, axidx] = coco_get_adjt_data(prob, ’po.orb.coll’, ’data’, ’axidx’);
>> data = adjt_int_init_data(fdata, ’po.orb’);
>> opt = data.coll_opt;
>> aidx = axidx([opt.xcn_idx; opt.T_idx]);
>> prob = coco_add_adjt(prob, ’po.orb.int’, @adjt_int, @adjt_int_du, data, ...

’d.po.orb.int’, ’aidx’, aidx, ’remesh’, @adjt_int_remesh);

Here, the encodings of adjt_int and adjt_int_du, shown below, again rely on the discretiza-
tion of the corresponding trajectory segment.

34

function [data, y] = adjt_int(prob, data, u)

pr = data.pr;
maps = pr.coll_seg.maps;
mesh = pr.coll_seg.mesh;

T = u(pr.T_idx);
x = u(pr.xbp_idx);

xcn = reshape(maps.W*x, maps.x_shp);
gcn = pr.ghan(xcn);
gcn = mesh.gka.*gcn;

gdxcn = pr.ghan_dx(xcn);
gdxcn = mesh.gdxka.*gdxcn;

J_xbp = (0.5*T/maps.NTST)*gdxcn(:)’;
J_T = (0.5/maps.NTST)*mesh.gwt*gcn’;

y = [J_xbp J_T];

end

function [data, J] = adjt_int_du(prob, data, u)

pr = data.pr;
maps = pr.coll_seg.maps;
mesh = pr.coll_seg.mesh;
opt = pr.int_opt;

T = u(pr.T_idx);
x = u(pr.xbp_idx);

xcn = reshape(maps.W*x, maps.x_shp);

gdxdxcn = pr.ghan_dxdx(xcn);
gdxdxcn = mesh.gdxdxka.*gdxdxcn;
gdxdxcn = sparse(opt.gdxdxrows1, opt.gdxdxcols1, gdxdxcn(:))*maps.W;
J = (0.5*T/maps.NTST)*sparse(opt.gdxdxrows2, opt.gdxdxcols2, ...
gdxdxcn(opt.gdxdxidx), opt.dJrows, opt.dJcols);

gdxcn = pr.ghan_dx(xcn);
gdxcn = mesh.gdxka.*gdxcn;
J = J + (0.5/maps.NTST)*sparse(opt.gdxdTrows, opt.gdxdTcols, ...
gdxcn(:), opt.dJrows, opt.dJcols);

gdxcn = mesh.gwt*sparse(maps.gdxrows, maps.gdxcols, gdxcn(:))*maps.W;
J = J + (0.5/maps.NTST)*sparse(opt.gdTdxrows, opt.gdTdxcols, ...
gdxcn(:), opt.dJrows, opt.dJcols);

end

The function data structure associated with adjt_int and adjt_int_du is initialized in the
encoding of adjt_int_init_data, shown below.

35

function data = adjt_int_init_data(fdata, oid)

data.coll_seg = fdata.coll_seg;
data.coll_opt = fdata.coll_opt;
data.xbp_idx = data.coll_seg.maps.xbp_idx;
data.T_idx = data.xbp_idx(end) + 1;
data.ghan = @ghan;
data.ghan_dx = @ghan_dx;
data.ghan_dxdx = @ghan_dxdx;

seg = fdata.coll_seg;
maps = seg.maps;
int = seg.int;

NCOL = int.NCOL;
NTST = maps.NTST;
xdim = int.dim;

cndim = NCOL*xdim;
bpdim = xdim*(NCOL+1);
xbpdim = NTST*(NCOL+1)*xdim;
xcnnum = NTST*NCOL;
xcndim = NTST*NCOL*xdim;
addim = xcndim+1;

% Derivative of (T/2N)*gxcn with respect to xbp:
rows = 1 + xcnnum*repmat(0:xdim-1, [xdim 1]);
rows = repmat(rows(:), [1 xcnnum]) + repmat(0:xcnnum-1, [xdim^2 1]);
opt.gdxdxrows1 = rows;
cols = 1:xcndim;
opt.gdxdxcols1 = repmat(reshape(cols, [xdim xcnnum]), [xdim 1]);

opt.gdxdxrows2 = ones(cndim*xbpdim, 1);
cols = 1 + xdim*(0:NCOL-1);
cols = repmat(cols(:), [1 xdim]) + repmat(0:xdim-1, [NCOL 1]);
cols = repmat(cols(:), [1 bpdim]) + addim*repmat(0:bpdim-1, [cndim 1]);
cols = repmat(cols(:), [1 NTST]) + ...
(cndim+addim*bpdim)*repmat(0:NTST-1, [cndim*bpdim 1]);

opt.gdxdxcols2 = cols;

idx = 1:NCOL;
idx = repmat(idx(:), [1 xdim]) + xcnnum*repmat(0:xdim-1, [NCOL 1]);
idx = repmat(idx(:), [1 bpdim]) + xcndim*repmat(0:bpdim-1, [cndim 1]);
idx = repmat(idx(:), [1 NTST]) + ...
(NCOL+cndim*xbpdim)*repmat(0:NTST-1, [cndim*bpdim 1]);

opt.gdxdxidx = idx;

% Derivative of (T/2N)*gxcn with respect to T:
opt.gdxdTrows = ones(xcndim,1);
opt.gdxdTcols = addim*xbpdim + (1:xcndim)’;

% Derivative of (1/2N)*w*g’ with respect to xbp:
opt.gdTdxrows = ones(xbpdim,1);
opt.gdTdxcols = xcndim + 1 + addim*(0:xbpdim-1)’;

36

opt.dJrows = 1;
opt.dJcols = addim*(xbpdim+1);

data.int_opt = opt;
data.oid = oid;

data = coco_func_data(data);

end

Finally, we encode adaptive updates to the function data structure and the ’aidx’ index
vector in the function adjt_int_remesh, shown below.

function [prob, status, xtr, ftr] = adjt_int_remesh(prob, data, chart, lb, Vlb)

cid = coco_get_id(data.oid, ’coll’);
[fdata, axidx] = coco_get_adjt_data(prob, cid, ’data’, ’axidx’);
data = adjt_int_init_data(fdata, data.oid);
opt = data.coll_opt;
aidx = axidx([opt.xcn_idx; opt.T_idx]);

xtr = [];
ftr = 1;
prob = coco_change_adjt(prob, data, ’aidx’, aidx, ’l0’, lb, ’vecs’, Vlb);
status = ’success’;

end

Continuation then proceeds along the one-dimensional family of periodic orbits according to
the following commands:

>> cont_args = {1, {’po.orb.int’, ’p3’, ’d.p1’, ’d.p2’, ’d.p4’, ...
’d.po.orb.int’}};

>> bd2 = coco(prob, ’po_run’, [], cont_args{:});

Here, the entries in the definition of cont_args indicate that µint, µp,3, ηp,1, ηp,2, ηp,4, and
ηint are allowed to vary, while µp,1, µp,2, µp,4, and ηp,3 remain fixed.

By linearity, and given the default zero initialization of the Lagrange multipliers, the
Lagrange multipliers remain equal to 0 throughout this initial continuation run. By con-
struction, a local extremum in the value of µint along the one-dimensional solution family
corresponds to a branch point of the corresponding restricted continuation problem. The
following sequence of commands reconstructs the periodic orbit continuation problem and
the associated contributions to the adjoint equations, and initializes the associated vector
of continuation variables and candidate tangent vector for continuation along the secondary
branch through this point.

>> BPlab = coco_bd_labs(bd2, ’BP’);
>> prob = coco_prob();
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1);
>> prob = coco_set(prob, ’po’, ’bifus’, false);
>> prob = ode_BP2po(prob, ’’, ’po_run’, BPlab);
>> prob = adjt_BP2po(prob, ’’, ’po_run’, BPlab);

37

We append the integral monitor function to the continuation problem according to the
following sequence of commands.

>> [fdata, uidx] = coco_get_func_data(prob, ’po.orb.coll’, ’data’, ’uidx’);
>> data = int_init_data(fdata, ’po.orb’);
>> maps = data.coll_seg.maps;
>> uidx = uidx([maps.xbp_idx; maps.T_idx]);
>> prob = coco_add_func(prob, ’po.orb.int’, @int, @int_du, data, ...

’inactive’, ’po.orb.int’, ’uidx’, uidx, ’remesh’, @int_remesh);

These are identical to those used in the initial construction, since no new continuation
variables are associated with the monitor function.

In contrast, the reconstruction and initialization of the associated contributions to the
adjoint equations require that we extract solution data for the branch point stored to disk
during the ’po_run’ continuation run. In the commands below, the first instance of the
chart variable is used to assign to cdata a null vector of the problem Jacobian that is
orthogonal to the original solution manifold. The call to coco_read_adjoint stores the
value of the Lagrange multiplier ηint in chart.x and the associated integer index in the
vector of continuation variables in lidx.

>> chart = coco_read_solution(’po_run’, BPlab, ’chart’);
>> cdata = coco_get_chart_data(chart, ’lsol’);
>> [chart, lidx] = coco_read_adjoint(’po.orb.int’, ’po_run’, BPlab, ...

’chart’, ’lidx’);

We use this information in the call below to coco_add_adjt.

>> [fdata, axidx] = coco_get_adjt_data(prob, ’po.orb.coll’, ’data’, ’axidx’);
>> data = adjt_int_init_data(fdata, ’po.orb’);
>> opt = data.coll_opt;
>> aidx = axidx([opt.xcn_idx; opt.T_idx]);
>> prob = coco_add_adjt(prob, ’po.orb.int’, @adjt_int, @adjt_int_du, data, ...

’d.po.orb.int’, ’aidx’, aidx, ’remesh’, @adjt_int_remesh, ...
’l0’, chart.x, ’tl0’, cdata.v(lidx));

Continuation then proceeds along the secondary branch of periodic orbits according to the
following commands:

>> cont_args = {1, {’d.po.orb.int’, ’po.orb.int’, ’p3’, ’d.p1’, ’d.p2’, ...
’d.p4’}, [0 1]};

>> bd3 = coco(prob, ’po_run_lagrange1’, [], cont_args{:});

We terminate continuation when ’d.po.orb.int’ equals 1, consistent with the requirement
that ηint = 1 at a stationary point.

In order to impose the further condition that ηp,2 = 0, we apply a third stage of continu-
ation along a one-dimensional solution manifold characterized by fixed values of p1, p4, ηp,3,
and ηint = 1, with varying values of p2, p3, ηp,1, ηp,2, and ηp,4. To this end, we use the solution
data stored for the second ’EP’ point in the previous continuation run to construct the pe-
riodic orbit continuation problem and the associated contributions to the adjoint equations,
as shown below.

38

>> EPlab = coco_bd_labs(bd3, ’EP’);
>> prob = coco_prob();
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1);
>> prob = coco_set(prob, ’po’, ’bifus’, false);
>> prob = ode_po2po(prob, ’’, ’po_run_lagrange1’, EPlab(2));
>> prob = adjt_po2po(prob, ’’, ’po_run_lagrange1’, EPlab(2));

Similarly, we append the integral monitor function using the identical sequence of commands
to those used in the previous stages of continuation.

>> [fdata, uidx] = coco_get_func_data(prob, ’po.orb.coll’, ’data’, ’uidx’);
>> data = int_init_data(fdata, ’po.orb’);
>> maps = data.coll_seg.maps;
>> uidx = uidx([maps.xbp_idx; maps.T_idx]);
>> prob = coco_add_func(prob, ’po.orb.int’, @int, @int_du, data, ...

’inactive’, ’po.orb.int’, ’uidx’, uidx, ’remesh’, @int_remesh);

The construction of the contributions to the adjoint equations associated with the integral
monitor function shown below omits reference to a candidate tangent vector, since there is
no ambiguity in this choice at a regular solution point.

>> chart = coco_read_adjoint(’po.orb.int’, ’po_run_lagrange1’, EPlab(2), ...
’chart’);

>> [fdata, axidx] = coco_get_adjt_data(prob, ’po.orb.coll’, ’data’, ’axidx’);
>> data = adjt_int_init_data(fdata, ’po.orb’);
>> opt = data.coll_opt;
>> aidx = axidx([opt.xcn_idx; opt.T_idx]);
>> prob = coco_add_adjt(prob, ’po.orb.int’, @adjt_int, @adjt_int_du, data, ...

’d.po.orb.int’, ’aidx’, aidx, ’remesh’, @adjt_int_remesh, ...
’l0’, chart.x);

Finally, in order to detect and terminate at a zero crossing of ηp,2, we use the coco_add_event
utility as shown below.

>> prob = coco_add_event(prob, ’OPT’, ’BP’, ’d.p2’, ’==’, 0);
>> cont_args = {1, {’d.p2’, ’po.orb.int’, ’p3’, ’d.p1’, ’p2’, ’d.p4’}};
>> bd4 = coco(prob, ’po_run_lagrange2’, [], cont_args{:});

Each ’OPT’ point then corresponds to a stationary point of the integral functional under
simultaneous variations in p2 and p3.

Exercises

1. Starting from an ’OPT’ point located during the previous continuation run, use an
additional stage of continuation to impose the further condition that ηp,1 = 0.

2. Derive the adjoint equations for the Lagrangian L and explain the encoding of the
integral monitor function, its adjoint, and their derivatives in int, int_du, adjt_int,
and adjt_int_du.

39

3. Modify the encodings associated with the integral monitor function and the corre-
sponding contributions to the adjoint equations to enable optimization of an integral
functional of the form ∫ T

0

g(x(t), p, T) dt,

including the case that g(x(t), p, T) = p3/T .

4. Repeat the analysis in the ops demo of the manual to the auto continuation package5

using the observation and code from the previous exercise, or directly using the ’po’

toolbox without any further construction.

12 Toolbox reference
The toolbox constructors implement zero and monitor functions appropriate to the nature
of the continuation problem and the detection of special points along the solution mani-
fold. Event handlers ensure that solution data specifically associated with special points is
appropriately stored to disk.

12.1 Zero problems

Recall the dependence of the ’coll’ trajectory segment zero functions on the column matrix
υbp of state variables on the mesh of base points, the initial time T0, the interval length T , and
the problem parameters. For continuation of single-segment periodic orbits, the zero problem
is given in terms of the vector of continuation variables u = (υbp, T0, T, p) by appending the
zero function Φ(u) to the ’coll’ toolbox trajectory segment zero problem, where

Φ : (υbp, T0, T, p) 7→
(
υi − υf
nT · υbp

)
(39)

in the case of an autonomous dynamical systems and

Φ : (υbp, T, p) 7→ υi − υf (40)

in the case of a non-autonomous dynamical system. Here, υi and υf denote the state vec-
tors for the initial and final end points of the corresponding trajectory segment. In the
autonomous case, the continuation variable T0 is constrained by an initially inactive contin-
uation parameter encoded by the corresponding ’coll’ instance. In the non-autonomous
case, the ’po’ instance encodes two initially inactive continuation parameters corresponding
the continuation variables T0 and T . In either case, the dimensional deficit equals q, where
q is the number of problem parameters.

5Doedel, E.J. and Oldeman, B.E. AUTO-07P: Continuation and Bifurcation Software. 2012.

40

In the autonomous case, the phase condition nT · υbp = 0 identifies a unique member of
the family of periodic orbits obtained by arbitrary shifts in time. The vector n is updated
before each continuation step by applying a linear transformation to a previously obtained
υbp. This linear transformation depends on the discretization encoded in the ’coll’ zero
problem, and changes in response to adaptive remeshing of the trajectory discretization.

In the current implementation of the ’po’ toolbox, the zero problem for continuation
of multi-segment periodic orbits applies only to autonomous dynamical systems. Let M
denote the number of trajectory segments. To the collection of ’coll’ trajectory segment
zero problems, the ’po’ toolbox then appends a family Φ(υ1,i, . . . , υM,i, υ1,f , . . . , υM,f , p) of
event and reset conditions that associate each segment with a unique point of termination
on a zero-level surface of an event function, such that the terminal point is mapped to the
initial point on the subsequent segment by some reset function. Specifically, suppose that the
vector field, event function, and reset function associated with the j-th trajectory segment
are given by

(x, p) 7→ f(x, p;mj), (x, p) 7→ h(x, p; ej), and (x, p) 7→ g(x, p; rj), (41)

respectively, in terms of the mode label mj, event label ej, and reset label rj. Then,

Φ :
(
{υj,i}Mj=1, {υj,f}Mj=1, p

)
7→

h(υ1,f , p; e1)
υ2,i − g(υ1,f , p; r1)
h(υ2,f , p; e2)

υ3,i − g(υ2,f , p; r2)
...

h(υM,f , p; eM)
υ1,i − g(υM,f , p; rM)

. (42)

Collectively, the sequences {mj}Mj=1, {ej}Mj=1, and {rj}Mj=1 are referred to as the orbit signature.
The dimensional deficit of the multi-segment periodic orbit continuation problem equals q.

In the current implementation of the ’po’ toolbox, continuation of bifurcations of single-
or multi-segment periodic orbits relies on the simultaneous continuation of the corresponding
trajectory segments together with solutions to the associated variational equations. Recall
the notation ∆bp for the unknown values of a solution to the variational equation along
some trajectory segment on the corresponding mesh of base points. Then, in the case of
continuation of saddle-node and period-doubling bifurcations, ∆bp consists of single column,
whereas it has two columns in the case of continuation of torus bifurcations.

For single-segment periodic orbits in an autonomous dynamical system, the zero problem
for continuation of saddle-node bifurcations is now obtained by appending the zero function
Φ(υi,∆i,∆f , p, b) to the periodic orbit continuation problem. Here, the i and f subscripts
again reference the initial and final end points along the trajectory segment, and

Φ(υi,∆i,∆f , p, b) 7→

 ∆i + bF (υi, p)−∆f

F (υi, p)
T ·∆i

∆T
i ·∆i − 1

 . (43)

41

The vector F (υi, p) is an eigenvector of the monodromy matrix corresponding to the eigen-
value 1. When b 6= 0, this formulation ensures that ∆i is a generalized eigenvector corre-
sponding to the same eigenvalue. The corresponding dimensional deficit equals q − 1.

For single-segment periodic orbits in a non-autonomous dynamical system, the zero prob-
lem for continuation of saddle-node bifurcations is obtained by appending the zero function
Φ(∆i,∆f) to the periodic orbit zero problem, where

Φ(∆i,∆f) 7→
(

∆i −∆f

∆T
i ·∆i − 1

)
. (44)

The corresponding dimensional deficit equals q.
For single-segment periodic orbits, the zero problem for continuation of period-doubling

bifurcations is obtained by appending the zero function Φ(∆i,∆f) to the periodic orbit zero
problem, where

Φ(∆i,∆f) 7→
(

∆i + ∆f

∆T
i ·∆i − 1

)
(45)

whether the dynamical system is autonomous or non-autonomous. The corresponding di-
mensional deficit equals q − 1 in the autonomous case and q in the non-autonomous case.

For single-segment periodic orbits, the zero problem for continuation of torus bifurcations
is obtained by appending the zero function Φ(∆i,∆f , a, b) to the periodic orbit zero problem,
where

Φ(∆i,∆f , a, b) 7→

∆f,1 − a∆i,1 + b∆i,2

∆f,2 − a∆i,2 − b∆i,1

∆T
i,1 ·∆i,1 + ∆T

i,2 ·∆i,2 − 1
∆T
i,1 ·∆i,2

a2 + b2 − 1

 (46)

whether the dynamical system is autonomous or non-autonomous. Here, the second sub-
script denotes the corresponding column of the solution to the trajectory segment variational
problem. The corresponding dimensional deficit equals q − 1 in the autonomous case and q
in the non-autonomous case.

For multi-segment periodic orbits, denote by

Pj = g,x(υj,f , p; rj) ·
(
Inj
− f(υj,f , p;mj) · h,x(υj,f , p; ej)
h,x(υj,f , p; ej) · f(υj,f , p;mj)

)
(47)

the projection matrix that maps the solution of the variational equation associated with the
final end point along the j-th trajectory segment to an initial condition for the variational
equation along the subsequent trajectory segment. Then, the zero problem for continuation
of saddle-node bifurcations of multi-segment periodic orbits is obtained by appending the
zero function

Φ :
(
{υj,f}Mj=1, {∆j,i}Mj=1, {∆j,f}Mj=1, p

)
7→

P1 ·∆1,f −∆2,i

P2 ·∆2,f −∆3,i

. . .
PM ·∆M,f −∆1,i

∆T
1,i ·∆1,i − 1

 (48)

42

to the multi-segment periodic orbit zero problem. Similarly, the zero problem for continua-
tion of saddle-node bifurcations of multi-segment periodic orbits is obtained by appending
the zero function

Φ :
(
{υj,f}Mj=1, {∆j,i}Mj=1, {∆j,f}Mj=1, p

)
7→

P1 ·∆1,f −∆2,i

P2 ·∆2,f −∆3,i

. . .
PM ·∆M,f + ∆1,i

∆T
1,i ·∆1,i − 1

 (49)

to the multi-segment periodic orbit zero problem. Finally, the zero problem for continuation
of torus bifurcations of multi-segment periodic orbits is obtained by appending the zero
function

Φ :
(
{υj,f}Mj=1, {∆j,i}Mj=1, {∆j,f}Mj=1, p, a, b

)
7→

P1 ·∆1,f,1 −∆2,i,1

P1 ·∆1,f,2 −∆2,i,2

P2 ·∆2,f,1 −∆3,i,1

P2 ·∆2,f,2 −∆3,i,2

. . .
PM−1 ·∆M−1,f,1 −∆M,i,1

PM−1 ·∆M−1,f,2 −∆M,i,2

PM ·∆M,f,1 − a∆1,i,1 + b∆1,i,2

PM ·∆M,f,2 − a∆1,i,2 − b∆1,i,1

∆T
1,i,1 ·∆1,i,1 + ∆T

1,i,2 ·∆1,i,2 − 1
∆T

1,i,1 ·∆1,i,2

a2 + b2 − 1

(50)

to the multi-segment periodic orbit zero problem. As before, the last subscript refers to the
corresponding column of the solution to the variational equations.

12.2 Calling syntax

The calling syntax for generic ’po’ toolbox constructors is of the form

prob = tbx_ctr(prob, oid, varargin)

where prob denotes a (possibly empty) continuation problem structure and oid is a string
representing an object instance identifier.

In the case of the ode_isol2po toolbox constructor, the varargin input argument equals

varargin = coll [opts]

where coll equals the varargin argument of the ode_isol2coll constructor in the ’coll’

toolbox, i.e.,

coll = fcns t0 x0 [pnames] p0 [opts]

where

43

fcns = @f [@dfdx [@dfdp [@dfdxdx [@dfdxdp [@dfdpdp]]]]]

in the case of an autonomous vector field and

fcns = @f [@dfdx [@dfdp [@dfdt [@dfdxdx [@dfdxdp [@dfdpdp
[@dfdtdx [@dfdtdp [@dfdtdt]]]]]]]]]

for an non-autonomous vector field. Here, @f denotes a required function handle to the en-
coding of the operator F , and each of the optional arguments @dfdx, @dfdp, @dfdt, @dfdxdx,
@dfdxdp, @dfdpdp, @dfdtdx, @dfdtdp, and @dfdtdt is either an empty array ([]) or a function
handle to the corresponding array of partial derivatives with respect to the state variables,
the problem parameters, or time, respectively. An initial solution guess for the time mesh, the
state variables, and the problem parameters is given by the t0, x0, and p0 input arguments,
respectively. Notably, if adjoint equations are to be constructed using the adjt_isol2po

constructor, then the preceding call to ode_isol2po must include explicit function handles
to encodings of the Jacobians with respect to x, p, and (as appropriate) t, respectively.

In the case of the ode_isol2hspo constructor, the varargin input argument adheres to
the syntax

varargin = { funcs sig {t0...} {x0...} [pnames] p0 [opts] }

where

funcs = fun [fun_dx [fun_dp [fun_dxdx [fun_dxdp [fun_dpdp]]]]]
fun = { @f @e @r }
fun_dx = { (@dfdx | ’[]’) (@dedx | ’[]’) (@drdx | ’[]’) }
fun_dp = { (@dfdp | ’[]’) (@dedp | ’[]’) (@drdp | ’[]’) }
fun_dxdx = { (@dfdxdx | ’[]’) (@dedxdx | ’[]’) (@drdxdx | ’[]’) }
fun_dxdp = { (@dfdxdp | ’[]’) (@dedxdp | ’[]’) (@drdxdp | ’[]’) }
fun_dpdp = { (@dfdpdp | ’[]’) (@dedpdp | ’[]’) (@drdpdp | ’[]’) }
sig = { mode... } { event... } { reset... }

and where the ellipsis indicates a sequence of arguments of the same type of length equal to
the number of segments. Here, @f, @e, and @r denote required function handles to encodings
of the vector field f(x, p,m), the event function h(x, p; e), and the reset function g(x, p; r).
Each of the optional arguments @dfdx, @dedx, @drdx, @dfdp, @dedp, @drdp, @dfdxdx, @dedxdx,
@drdxdx, @dfdxdp, @dedxdp, @drdxdp, @dfdpdp, @dedpdp, and @drdpdp is either an empty
array ([]) or a function handle to the corresponding array of partial derivatives with respect
to the state variables and problem parameters, respectively. Notably, if adjoint equations
are to be constructed using the adjt_isol2hspo constructor, then the preceding call to
ode_isol2hspo must include explicit function handles to encodings of the Jacobians with
respect to x and p, respectively.

The sig argument contains the orbit signature, encoded in three cell arrays representing
the collection of mode, event, and reset labels, respectively. An initial solution guess for the
time mesh and state variables for each segment is provided by the elements of the {t0...}

and {x0...} arguments, respectively. The corresponding values of the problem parameters
are given by p0. An optional designation of string labels for continuation parameters assigned
to track the problem parameters is provided with pnames, which is either a single string or

44

a cell array of strings. An error is thrown if the number of string labels in this optional
argument, when present, differs from the number of elements of p0.

For each of the remaining toolbox constructors, the varargin input argument adheres to
the syntax

varargin = run [soid] lab [opts]

In all cases, run denotes a string identifying a previous run and lab is a numeral identifying
the corresponding solution file. The optional argument soid denotes a source object instance
identifier, in the case that this differs from oid.

For toolbox constructors used to build single-segment periodic orbit continuation prob-
lems, the optional opts argument may equal either of the strings ’-po-end’ or ’-end-po’.
Similarly, for toolbox constructors used to build multi-segment periodic orbit continua-
tion problems, the optional opts argument may equal either of the strings ’-hspo-end’

or ’-end-hspo’. In either case, this denotes explicitly the end of the sequence of arguments
to a ’po’ toolbox constructor. For ode_po2po and ode_hspo2hspo, opts may also contain
the string ’-switch’, which, when present, implies that continuation should proceed along
a secondary solution branch through the given solution.

For the ode_po2po, ode_BP2po, ode_HB2po, and ode_PD2po constructors, opts may also
contain the string ’-var’ followed by a numerical matrix, indicating the simultaneous con-
tinuation of solutions to the corresponding variational problem. In this case, each column
of the matrix corresponds to a perturbation to the initial point on the trajectory segment.
Similarly, in the case of ode_hspo2hspo, ode_BP2hspo, and ode_PD2hspo constructors, opts
may contain the string ’-var’ followed by a cell array of numerical matrices, again indicating
the simultaneous continuation of solutions to each of the corresponding variational problems.
Each element of the cell array represents a collection of perturbations to the initial point on
the corresponding trajectory segment.

12.3 Adjoint functions

For continuation of general single-segment periodic orbits, the contributions to the adjoint
equations associated with variations in υbp, T0, T , and p are expressed in terms of the Jaco-
bians ∂tF (x, p), ∂xF (x, p), and ∂pF (x, p) and a subset of components of the vector of con-
tinuation multipliers λ. The appropriate changes to the continuation problem structure are
invoked using the adjt_isol2po constructor, following a preceding call to the ode_isol2po

constructor that includes function handles to explicit encodings of these Jacobians, or to
the ode_HB2po constructor that includes reference to a Hopf bifurcation detected during a
preceding stage of equilibrium point continuation. Specifically, in the call

prob = adjt_isol2po(prob, oid)

the oid argument denotes an object identifier associated with the toolbox instance created
by the preceding call to ode_isol2po or ode_HB2po. The corresponding components of λ are
initialized to 0.

45

If the preceding call to ode_isol2po includes an explicit list of parameter labels, then
the corresponding additions to the adjoint equations are automatically encoded by the call
to adjt_isol2po. The corresponding components of the vector of continuation multipliers
η are initialized to 0.

In a similar fashion, a call to ode_po2po or ode_BP2po may be followed by a call to
adjt_po2po or adjt_BP2po, respectively, with identical arguments, in order to append the
contributions to the adjoint equations associated with the reconstructed continuation prob-
lem. In either case, the associated elements of the vectors of continuation multipliers λ and
η are automatically initialized from the corresponding values stored in a solution file.

For continuation of multi-segment periodic orbits, the contributions to the adjoint equa-
tions associated with variations in υbp, T0, T , and p are expressed in terms of the Jacobians
∂xf(x, p), ∂xg(x, p), ∂xh(x, p), ∂pf(x, p), ∂pg(x, p), and ∂ph(x, p), and a subset of components
of the vector of continuation multipliers λ. The appropriate changes to the continuation
problem structure are invoked using the adjt_isol2hspo constructor, following a preceding
call to the ode_isol2hspo constructor that includes function handles to explicit encodings
of these Jacobians. Specifically, in the call

prob = adjt_isol2hspo(prob, oid)

the oid argument denotes an object identifier associated with the toolbox instance created
by the preceding call to ode_isol2hspo. The corresponding components of λ are initialized
to 0.

If the preceding call to ode_isol2hspo includes an explicit list of parameter labels, then
the corresponding additions to the adjoint equations are automatically encoded by the call
to adjt_isol2hspo. The corresponding components of the vector of continuation multipliers
η are initialized to 0.

In a similar fashion, a call to ode_hspo2hspo or ode_BP2hspo may be followed by a call to
adjt_hspo2hspo or adjt_BP2hspo, respectively, with identical arguments, in order to append
the contributions to the adjoint equations associated with the reconstructed continuation
problem. In either case, the associated elements of the vectors of continuation multipliers λ
and η are automatically initialized from the corresponding values stored in a solution file.

12.4 Continuation parameters

The inclusion of the pnames optional argument in the call to either of the ode_isol2po or
ode_isol2hspo toolbox constructors ensures that the continuation problem structure en-
codes embedded continuation parameters that are equal in number to the number of string
labels (which must equal the number of problem parameters). These string labels are stored
in the function data structure, written to disk with each solution file, and reused in the event
that a continuation problem is created from saved solution data using either of the remaining
toolbox constructors. Notably, ode_HB2po reuses information about such embedded contin-
uation parameters stored to disk at a Hopf bifurcation during a previous run with the ’ep’

toolbox. A subsequent call to adjt_isol2po, adjt_po2po, adjt_BP2po, adjt_isol2hspo,
adjt_hspo2hspo, or adjt_BP2hspo ensures the encoding in the continuation problem struc-

46

ture of an accompanying set of initially inactive embedded continuation parameters, which
correspond to an associated subset of the vector of continuation multipliers η (initialized to
0), and with labels obtained by appending ’d.’ to the original string labels.

For single-segment periodic orbit continuation problems, the ’po’ constructors encode
an embedded monitor function whose output equals the interval length T with identifier
’OID.po.period’ in terms of the ’po’ object instance identifier OID (the period is omitted
when OID equals the empty string). The corresponding continuation parameter is initially
active in the case of an autonomous dynamical system and initially inactive otherwise. In the
case of a non-autonomous vector field, the ’po’ constructors encode an additional embedded
monitor function whose output equals the initial time T0 with identifier ’OID.po.tinit’.
The corresponding continuation parameter is initially inactive. For multi-segment periodic
orbit continuation problems, the ’po’ constructors encode an embedded monitor function
whose output equals the total interval length

∑
j Tj with identifier ’OID.hspo.period’. The

corresponding continuation parameter is initially active.
If the ’bifus’ option of a ’po’ instance is set to true (as it is by default), the ode_isol2po,

ode_po2po, ode_BP2po, ode_HB2po, and ode_PD2po constructors also encode the four nonem-
bedded continuation parameters ’OID.po.test.SN’, ’OID.po.test.PD’, ’OID.po.test.TR’,
and ’OID.po.test.USTAB’, associated with detection of saddle-node bifurcations, period-
doubling bifurcations, torus bifurcation and neutral saddle points, and with monitoring the
Lyapunov stability (the number of unstable Floquet multipliers) of the periodic orbit, re-
spectively. In this case, changes to the sign of the first three of these continuation parameters
trigger the detection of special points denoted by ’SN’, ’PD’, and ’TR’, respectively. If the
’NSA’ option of the ’po’ instance is set to true (contrary to its default value of false), then
neutral saddles, denoted by ’NSA’, are also located.

If the ’bifus’ option of an ’hspo’ instance is set to true (as it is by default), the
ode_isol2hspo, ode_hspo2hspo, ode_BP2hspo, and ode_PD2hspo constructors also encode
the four nonembedded continuation parameters ’OID.hspo.test.SN’, ’OID.hspo.test.PD’,
’OID.hspo.test.TR’, and ’OID.hspo.test.USTAB’, associated with detection of saddle-
node bifurcations, period-doubling bifurcations, torus bifurcation and neutral saddle points,
and with monitoring the Lyapunov stability (the number of unstable Floquet multipliers)
of the multi-segment periodic orbit, respectively. In this case, changes to the sign of the
first three of these continuation parameters trigger the detection of special points denoted
by ’SN’, ’PD’, and ’TR’, respectively. If the ’NSA’ option of the ’hspo’ instance is set to
true (contrary to its default value of false), then neutral saddles, denoted by ’NSA’, are also
located.

12.5 Toolbox settings

Optional settings associated with embedded instances of the ’coll’ toolbox may be assigned
non-default values using the coco_set utility. These include the initial number of discretiza-
tion intervals (’NTST’ with default value 10) and the degree of the interpolating polynomials
(’NCOL’ with default value 4). While it is also possible to assign a non-default value to the
tolerance used to trigger the ’MXCL’ special point, it is best to do so only by changing the

47

global coco tolerance. This will ensure that the error tolerance used for ’coll’ is consistent
with the value used by the nonlinear solver.

For a multi-segment periodic orbit continuation problem, each trajectory segment is
associated with a separate instance of the ’coll’ settings. The coco_set core utility can be
used to set these individually or collectively, as described in Recipes for Continuation and
the ’coll’ tutorial.

To set options associated with a specific ’po’ instance with object instance identifier OID,
use the syntax

prob = coco_set(prob, ’OID.po’, ...

To set options associated with all ’po’ instances whose object instance identifiers derive
from a parent identifier PID, use the syntax

prob = coco_set(prob, ’PID.po’, ...

To set options for all ’po’ instances in a continuation problem, use the syntax

prob = coco_set(prob, ’po’, ...

An analogous pattern applies to ’hspo’ instances. As explained in Recipes for Continuation,
precedence is given to settings defined using the most specific path identifier. See the output
of the po_settings and hspo_settings utilities for a list of supported settings and their
default or current values.

12.6 Toolbox output

By definition, the bifurcation data cell array stored during continuation of single-segment
periodic orbits and returned by the coco entry-point function (given a receiving variable) in-
cludes three columns with headers ’||OID.x||_{2,MPD}’, ’MAX(OID.x)’, and ’MIN(OID.x)’

with data given by a quadrature-approximation of the L2[0, 1] norm of the deviation of the
time-rescaled periodic orbit from its state-space mean and the maximum and minimum en-
tries of each state variable along the orbit, respectively, and with OID representing an object
instance identifier. For multi-segment periodic orbits, the bifurcation data cell array includes
a column with header ’||OID.hspo.orb.bvp.seg1.x||’ with data given by a quadrature-
approximation of the L2 norm of the first trajectory segment, and so on for each trajectory
segment. All continuation parameters are included in the bifurcation data cell array by de-
fault, but printed to screen during continuation only if included in the list of arguments to
the coco entry-point function.

For single-segment periodic orbits, the sol output argument of the po_read_solution

utility contains

• the time instances corresponding to the mesh of base points (in the tbp field),

• the values of the state variables on the mesh of base points (in the xbp field),

• the interval length (in the T field),

48

• the vector of problem parameters (in the p field).

Similarly, for multi-segment periodic orbits, the sol output argument of the toolbox solution
extractor hspo_read_solution contains

• a cell array with one entry per segment containing the time instances corresponding
to the mesh of base points (in the tbp field),

• a cell array with one entry per segment containing the values of the state variables on
the mesh of base points (in the xbp field),

• a cell array with one entry per segment containing the interval length (in the T field),

• the vector of problem parameters (in the p field).

For saddle-node bifurcations of single-segment periodic orbits in autonomous dynamical
systems, the sol output argument contains

• the unit (generalized) eigenvector v of the monodromy matrix corresponding to the
eigenvalue 1 (in the var.v field),

• the coefficient of the vector field f at the end point of the trajectory segment along the
unit projection of v onto the nullspace of the monodromy matrix (in the var.b field).

For saddle-node bifurcations of single-segment periodic orbits in non-autonomous dynamical
systems, the var.v field contains the unit eigenvector of the monodromy matrix correspond-
ing to the eigenvalue 1. Similarly, for period-doubling bifurcation points of single-segment
periodic orbits, the field var.v contains the unit eigenvector of the monodromy matrix
corresponding to the eigenvalue −1, whether the dynamical system is autonomous or non-
autonomous. Finally, for torus bifurcation points, the sol output argument contains

• the real and imaginary parts of a complex eigenvector of the monodromy matrix cor-
responding to an eigenvalue with magnitude 1 (in the var.v field, normalized to be
mutually orthogonal with unit length for the real part, and

• cosine and sine of the phase of the eigenvalue (in the var.a and var.b fields).

For bifurcations of multi-segment periodic orbits, the var.v field of the sol output ar-
gument contains a cell array whose first entry corresponds to the content described in the
single-segment case, and whose subsequent entries are the forward images of perturbations
to the initial point on the first trajectory segment for each subsequent segment.

The po_plot_theme and hspo_plot_theme toolbox utilities define the default visualiza-
tion theme for the ’po’ toolbox. For example, the command

>> thm = po_plot_theme(’po’)

assigns the default theme for visualization of the results of continuation of general periodic
orbits to the thm variable. Similarly, the commands

49

>> thm_SN = po_plot_theme(’po.SN’)
>> thm_PD = po_plot_theme(’po.PD’)
>> thm_TR = po_plot_theme(’po.TR’)

assign the default themes for continuation of saddle-node, period-doubling, and torus bi-
furcation points, respectively, to the variables thm_SN, thm_PD, and thm_TR. Notably, when
visualizing the results of continuation of general periodic orbits, the continuation parameter
’OID.po.test.USTAB’ is used to distinguish branches of stable and unstable orbits, respec-
tively. In this case, to include markers identifying saddle-node bifurcations, period-doubling
bifurcations, neutral saddles, or torus bifurcations, the labels ’SN’, ’PD’, ’NSA’, or ’TR’

should be added to the special field of the problem-specific plotting theme. The same
principles apply to continuation of multi-segment periodic orbits with instances of ’hspo’.

12.7 Developer’s interface

Continuation problems constructed with the ’po’ toolbox constructors may be embedded in
larger continuation problem that contain additional continuation variables, zero functions,
and/or monitor functions. Each ’po’ instance is associated with a toolbox instance identifier
obtained by prepending an object instance identifier to the string ’po’. Similarly, each
’hspo’ instance is associated with a toolbox instance identifier obtained by prepending an
object instance identifier to the string ’hspo’. The object instance identifier of the instance
of ’coll’ embedded in an instance of ’po’ is obtained by appending ’orb’ to the ’po’

toolbox instance identifier. The object instance identifier of the 1st (2nd, 3rd, ...) instance
of ’coll’ embedded in an instance of ’hspo’ is obtained by appending ’orb.bvp.seg1’

(’orb.bvp.seg2’, ’orb.bvp.seg3’, ...) to the ’hspo’ toolbox instance identifier.
The coco_get_func_data core utility may be used to extract the function dependency

index set (the ’uidx’ option) and the toolbox data structure (the ’data’ option) associated
with the single- or multi-segment periodic orbit continuation problem. In particular, the cid
field of the data structure of a ’po’ instance contains the toolbox instance identifier for the
corresponding embedded ’coll’ instance. Similarly, the bvid field of the data structure of
an ’hspo’ instance contains the toolbox instance identifier for the corresponding embedded
’bvp’ instance. These may be used to extract function data associated with embedded
’coll’ instances and to assign ’coll’ toolbox settings to individual trajectory segments.

The toolbox data structure associated with single- or multi-segment periodic orbit con-
tinuation problems contains a number of implementation-dependent internal fields, whose
use may change in the future. Accessing such internal fields is deprecated.

50

