
The Trajectory Collocation Toolbox

Harry Dankowicz
Department of Mechanical Science and Engineering

University of Illinois at Urbana-Champaign

Frank Schilder
Department of Mathematics

Technical University of Denmark

November 2, 2017

Contents
1 Introduction 2

2 A shooting method – catenary 3

3 Heteroclinic connections – huxley 7

4 Harmonic excitation – linode 11

5 Bratu’s boundary-value problem – bratu 17

6 A moving Poincaré section – lienard 19

7 Invariant curves and tori – torus 22

8 Optimization – linode_optim 27

9 Toolbox reference 35

1

1 Introduction
The ’coll’ toolbox is a basic toolbox for continuation along families of constrained collec-
tions of trajectory segments for evolution equations of the form

ẋ = F (t, x, p), t ∈ [T0, T0 + T] (1)

in terms of an initial time T0, an interval length T , a vector of state variables x ∈ Rn, a
vector of problem parameters p ∈ Rq, and a nonlinear operator F : R × Rn × Rq → Rn.
For infinite-dimensional problems, the toolbox applies to suitable discretizations of x and
F . The ’coll’ toolbox belongs to the ’ode’ toolbox family, and is modeled on the ’coll’,
’bvp’, ’msbvp’, and ’varcoll’ toolboxes, described in Recipes for Continuation1.

The ’coll’ toolbox supports adaptive discretization of the state-space representation
of each trajectory segment in terms of a continuous piecewise-polynomial function of t,
and of the governing differential equations in terms of derivative conditions at a collection
of collocation nodes associated with the Gauss-Legendre quadrature nodes. Notably, the
discretizations for different trajectory segments in a continuation problem are independent.

The ’coll’ toolbox supports autonomous implementations of the operator F that omit
dependence on the first argument. In fact, unless otherwise indicated, this is the assumed
default and explicit time-dependence must be indicated by an optional setting.

The ’coll’ toolbox supports simultaneous continuation of trajectory segments and so-
lutions to the corresponding variational equations that lie in Rn×m for arbitrary m. Such
solutions describe the linear sensitivity to perturbations and correspond to directional deriva-
tives of the flow operator corresponding to the dynamical system.

The ’coll’ toolbox supports detection of branch and fold points (inherited from the as-
sociated atlas class), as well as critical thresholds associated with an estimated discretization
error.

For continuation of individual trajectory segments or mutually constrained collections of
trajectory segments, the ’coll’ toolbox supports the construction of the associated adjoint
equations2.

The toolbox user interface is defined by the coll_read_solution and bvp_read_solution

utilities, which read solution and toolbox data from disk, and by the toolbox constructors

• ode_isol2coll for continuation along a family of individual trajectory segments from
an initial solution guess;

• ode_coll2coll for continuation along a family of individual trajectory segments from
a saved solution point;

• ode_BP2coll for continuation along a family of individual trajectory segments from a
branch point along a secondary branch;

1Dankowicz, H. & Schilder, F., Recipes for Continuation, Society for Industrial and Applied Mathematics,
2013.

2Li, M. & Dankowicz, H., Staged Construction of Adjoints for Constrained Optimization of Integro-
Differential Boundary-Value Problems, in review, 2017.

2

• ode_isol2bvp for continuation along a family of mutually constrained collections of
trajectory segments from an initial solution guess.

• ode_bvp2bvp for continuation along a family of mutually constrained collections of
trajectory segments from a saved solution point.

• ode_BP2bvp for continuation along a family of mutually constrained collections of tra-
jectory segments from a branch point along a secondary branch.

The additional constructors adjt_isol2coll, adjt_coll2coll, and adjt_BP2coll contribute
terms to the adjoint equations associated with the zero and monitor functions appended to a
continuation problem by the ode_isol2coll, ode_coll2coll, and ode_BP2coll constructors,
respectively. The additional constructors adjt_isol2bvp, adjt_bvp2bvp, and adjt_BP2bvp

contribute terms to the adjoint equations associated with the zero and monitor functions
appended to a continuation problem by the ode_isol2bvp, ode_bvp2bvp, and ode_BP2bvp

constructors, respectively.
Usage is illustrated in the following several examples. Each example corresponds to fully

documented code in the coco/coll/examples folder in the coco release. Slight differences
between the code included below and the example implementations in coco/coll/examples

show acceptable variations in the coco syntax and demonstrate alternative solutions to
construction and analysis. To gain further insight, please run the code to generate and
explore figures and screen output.

Detailed information about coco utilities deployed in these examples may be found in
the document “Short Developer’s Reference for coco,” available in the coco/help folder in
the coco release, and in Recipes for Continuation.

2 A shooting method – catenary

Consider the autonomous two-point boundary-value problem

ẋ1 = x2, ẋ2 = (1 + x22)/x1, x1(0) = 1, x1(1) = p (2)

in terms of the vector of state variables x = (x1, x2) ∈ R2 and the scalar problem parameter
p ∈ R. Solutions correspond to extremal curves s 7→ f(s), and their derivatives, for the
integral functional ∫ 1

0

f(s)
√

1 + f ′(s)2 ds (3)

in the space of functions that satisfy the boundary conditions f(0) = 1 and f(1) = p.
For arbitrary initial conditions x1(0) and x2(0), solutions to the associated initial-value

problem are given by

x1(t) =
x1(0)√

1 + x22(0)
cosh

(√
1 + x22(0)

x1(0)
t+ arcsinhx2(0)

)
(4)

3

and

x2(t) = sinh

(√
1 + x22(0)

x1(0)
t+ arcsinhx2(0)

)
. (5)

For each p, the boundary-value problem then corresponds to a solution of the nonlinear
equation

1√
1 + x22(0)

cosh

(√
1 + x22(0) + arcsinhx2(0)

)
= p (6)

Since the left-hand side is convex with a unique global minimum at x2(0) ≈ −2.26, it follows
that there are no solutions to the boundary-value problem for p . 0.587 and two solutions
for p & 0.587. As an example, when p = cosh 1, the boundary-value problem is satisfied by
the functions x1(t) = cosh t and x2 = sinh t, for which x2(0) = 0.

We construct a family of solutions to the boundary-value problem for admissible values
of p by first constructing a family of trajectory segments that satisfy the boundary condition
at t = 0, but are defined only on the interval [0, T] for varying interval length T . To this
end, we encode the vector field in the anonymous function cat, as shown in the following
command

>> cat = @(x,p) [x(2,:); (1+x(2,:).^2)./x(1,:)];

The encoding is vectorized and autonomous. A corresponding trajectory segment is given
by the single-point time history assigned below to the t0 and x0 variables.

>> t0 = 0;
>> x0 = [1 0];

Here, t0 encodes a one-dimensional array of time instances and x0 encodes a two-dimensional
array of the corresponding points in state space, with one row per time instant.

We compute a family of trajectory segments under variations in T by invoking the coco

entry-point function as shown in the sequence of commands below.

>> prob = coco_prob();
>> prob = ode_isol2coll(prob, ’’, cat, t0, x0, []);
>> data = coco_get_func_data(prob, ’coll’, ’data’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’pars’, ...

[maps.x0_idx; maps.x1_idx(1); maps.T_idx], ...
{’y1s’ ’y2s’ ’y1e’ ’T’});

>> prob = coco_set(prob, ’cont’, ’NAdapt’, 10);
>> cont_args = {1, {’T’ ’y1e’ ’coll.err’ ’coll.err_TF’}, [0 1]};
>> bd = coco(prob, ’coll1’, [], cont_args{:});

Here, the coco_prob core utility assigns an empty continuation problem structure to prob.
The ode_isol2coll constructor appends an instant of the collocation zero problem to the
continuation problem structure. The second input argument to this constructor is used to
create a unique toolbox instance identifier, in this case the default value ’coll’. The empty
bracket in the last input argument corresponds to the absence of any problem parameters
in the encoding of the vector field. The dimensional deficit of the continuation problem

4

encoded thus far in prob equals the number of state-space dimensions plus 1, i.e., 3.
The coco_get_func_data utility is used in the next line to extract the function data struc-

ture associated with the ’coll’ toolbox instance. The data.coll_seg.maps field contains
construction-independent integer indices for distinct elements in the vector of continuation
variables that can be used to refer to the variables representing the initial and final points on
the trajectory segment, as well as to the interval length. The coco_add_pars utility appends
four monitor functions and corresponding continuation parameters to the continuation prob-
lem. In particular, the two elements of the vector of continuation variables that correspond
to the initial point on the trajectory segment are constrained to the continuation parameters
’y1s’ and ’y2s’. Similarly, the element of the vector of continuation variables correspond-
ing to the first component of the final point on the trajectory segment is constrained to
the continuation parameter ’y1e’. Finally, the element of the vector of continuation vari-
ables corresponding to the interval length is constrained to the continuation parameter ’T’.
By default, these continuation parameters are all inactive. The dimensional deficit of the
continuation problem encoded thus far in prob therefore equals 3− 4 = −1.

The call to the coco entry-point function identifies the run by the string identifier
’coll1’. It uses the empty bracket to indicate the complete encoding of the corresponding
extended continuation problem and the initial assignment of inactive continuation param-
eters in prob. It identifies the desired dimension of the solution manifold by the integer 1
in the cont_args input argument. To accommodate this dimensionality, the ’T’ and ’y1e’

continuation parameters are released and ’T’ is allowed to vary across the interval [0, 1].
The screen output also includes a discretization error estimate coll.err, as well as the ratio
coll.err_TF between this error estimate and a default tolerance. Here, the coco_set core
utility is used to assign the non-default value 10 to the ’NAdapt’ setting of the ’cont’ tool-
box family, in order to indicate that the discretization should be adaptively remeshed every
ten continuation steps.

The final trajectory segment obtained during continuation satisfies the boundary-value
problem for some value of p, and provides a starting point for continuation in p. The
sequence of commands below extracts the corresponding solution label from the bd output
of the previous run, and uses this to reconstruct a continuation problem structure that is
identical to the previous one.

>> labs = coco_bd_labs(bd, ’EP’);
>> prob = coco_prob();
>> prob = ode_coll2coll(prob, ’’, ’coll1’, labs(end));
>> data = coco_get_func_data(prob, ’coll’, ’data’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’pars’, ...

[maps.x0_idx; maps.x1_idx(1); maps.T_idx], ...
{’y1s’ ’y2s’ ’y1e’ ’T’});

>> prob = coco_set(prob, ’cont’, ’NAdapt’, 10, ’PtMX’, 200);
>> cont_args = {1, {’y1e’ ’y2s’ ’coll.err’ ’coll.err_TF’}, [0 3]};
>> coco(prob, ’coll2’, [], cont_args{:});

Here, the third and fourth input arguments to the ode_coll2coll constructor identify the
run name and the integer label for the corresponding solution file, stored to disk during the

5

previous run. This time, the desired solution manifold dimensionality is achieved by releasing
’y1e’ and ’y2s’, while keeping ’T’ fixed and allowing ’y1e’ to vary on the interval [0, 3].
The screen output includes the detection of a fold point along the solution manifold, where
’y1e’ is approximately equal to 0.587, as predicted.

We visualize the results of continuation by using the coco_bd_read core utility to extract
information from the bifurcation data file stored during continuation.

>> figure(1); clf; hold on; grid on; box on; axis([0 1 0 3])
>> bd = coco_bd_read(’coll2’);
>> labs = coco_bd_labs(bd);
>> for lab=labs

sol = coll_read_solution(’’, ’coll2’, lab);
plot(sol.tbp, sol.xbp(:,1), ’LineStyle’, ’-’, ’LineWidth’, 2, ...
’Color’, ’black’, ’Marker’, ’.’, ’MarkerSize’, 12)

end
>> hold off

Here, bd is a cell array consisting of a row of string headers and a nonempty collection of
subsequent rows of data. The coco_bd_labs utility extracts integer labels of solutions stored
to disk. The coll_read_solution utility reads solution data from each of the corresponding
solution files, and assigns a sequence of time instants and corresponding points in state space
to the tbp and xbp fields of the sol structure. A single call to the coco_plot_sol utility
may substitute for the for loop, as shown here:

>> figure(1); clf; hold on; grid on; box on; axis([0 1 0 3])
>> coco_plot_sol(’coll2’, ’’)
>> hold off

Exercises

1. Try an alternative construction of the initial trajectory segment in the first continu-
ation run in terms of a two-point time history obtained by applying a forward Euler
discretization step with step size 0.04 to the point (x1, x2) = (1, 0) at t = 0.

2. Experiment with the frequency of adaptive remeshing and the initial number of dis-
cretization intervals. The latter is set using the ’NTST’ option of the ’coll’ toolbox
and defaults to 10.

3. Use the coco_add_event utility to add a special point associated with a particular
numerical value of the continuation parameter ’y1e’ and rerun the second continuation
run to find the corresponding solution to the two-point boundary-value problem.

4. The method employed in this example for solving the two-point boundary-value prob-
lem is commonly referred to as a shooting method. Apply the method to the following
two-point boundary-value problem

y′′ + e−y = 0, y(0) = 0, y(1) = 0

6

from the 2nd edition of Differential Equations by Sanchez, Allen, and Kyner.

3 Heteroclinic connections – huxley

As long as 0 < p1 < 1 and p2 = (1 − 2p1)/
√

2, there exists3 a connecting orbit of the
dynamical system

ẋ1 = x2, ẋ2 = p2x2 − x1(1− x1)(x1 − p1) (7)

between two saddle equilibria at (x1, x2) = (0, 0) and (1, 0), given by

x1(t) =
1

1 + e−t/
√
2
, x2(t) =

1√
2

e−t/
√
2

(1 + e−t/
√
2)2
. (8)

This orbit coincides with one branch of the unstable manifold of the equilibrium at (0, 0)
and one branch of the stable manifold of the equilibrium at (1, 0).

For p2 away from (1− 2p1)/
√

2, the unstable and stable manifolds do not intersect each
other, but must each intersect the vertical line x1 = p1, since i) ẋ1 > 0 for x2 > 0 and ii)
ẋ2 > 0 (< 0) for x2 = 0 and 0 < x1 < p1 (p1 < x1 < 1). We can use this observation to
construct a numerical approximation of the connecting orbit.

To this end, we encode the vector field in the function huxley shown below.

function y = huxley(x, p)

x1 = x(1,:);
x2 = x(2,:);
p1 = p(1,:);
p2 = p(2,:);

y(1,:) = x2;
y(2,:) = p2.*x2-x1.*(1-x1).*(x1-p1);

end

The encoding is vectorized and autonomous. Initial values for the problem parameters and
explicit expressions for the relevant stable and unstable eigenvectors are encoded using the
following sequence of commands.

>> p0 = [0.5; 0];
>> dev0 = [0.03; 0.2];
>> vu = [sqrt(4*p0(1)+p0(2)^2)-p0(2); 2*p0(1)];
>> vu = vu/norm(vu, 2);
>> vs = [-sqrt(4*(1-p0(1))+p0(2)^2)-p0(2); 2*(1-p0(1))];
>> vs = vs/norm(vs, 2);

3The existence of heteroclinic connections in this Huxley model is investigated in Doedel, E.J., and
Friedman, M.J., “Numerical computation of heteroclinic orbits," Journal of Computational and Applied
Mathematics, 26, pp. 155-170, 1989.

7

The dev0 variable contains initial distances from the equilibria, along the tangent spaces of
the unstable and stable manifolds, respectively, to the initial points along the corresponding
trajectory segments. The following sequence of assignments stores the corresponding tra-
jectory information in an array of structs, each corresponding to one of the two trajectory
segments.

>> segs(1).t0 = 0;
>> segs(1).x0 = dev0(1)*vu’;
>> segs(1).p0 = p0;
>> segs(2).t0 = 0;
>> segs(2).x0 = [1 0]+dev0(2)*vs’;
>> segs(2).p0 = p0;

In the following we encode a continuation problem that corresponds to two trajectory
segments that satisfy appropriate boundary conditions. As we have reason to perform the
construction by repeated continuation under different sets of constraints, we encode the two
problem-specific constructors huxley_isol2het and huxley_sol2het as shown below.

function prob = huxley_isol2het(prob, segs, dev0)

prob = ode_isol2coll(prob, ’huxley1’, @huxley, ...
segs(1).t0, segs(1).x0, segs(1).p0);

prob = ode_isol2coll(prob, ’huxley2’, @huxley, ...
segs(2).t0, segs(2).x0, segs(2).p0);

prob = huxley_close_het(prob, dev0);

end

function prob = huxley_sol2het(prob, run, lab)

prob = ode_coll2coll(prob, ’huxley1’, run, lab);
prob = ode_coll2coll(prob, ’huxley2’, run, lab);

[data chart] = coco_read_solution(’bcs’, run, lab);
devs = chart.x(data.dev_idx);

prob = huxley_close_het(prob, devs);

end

In each of these encodings, the two calls to ode_isol2coll or ode_coll2coll, respectively,
encode a two-segment continuation problem with total dimensional deficit equal to 10. The
huxley_close_het constructor is shown below.

function prob = huxley_close_het(prob, devs)

[data1 uidx1] = coco_get_func_data(prob, ’huxley1.coll’, ’data’, ’uidx’);
[data2 uidx2] = coco_get_func_data(prob, ’huxley2.coll’, ’data’, ’uidx’);

maps1 = data1.coll_seg.maps;
maps2 = data2.coll_seg.maps;

8

prob = coco_add_glue(prob, ’shared’, uidx1(maps1.p_idx), uidx2(maps2.p_idx));

prob = coco_add_func(prob, ’bcs’, @huxley_bcs, [], ’zero’, ’uidx’, ...
[uidx1(maps1.x0_idx); uidx2(maps2.x1_idx); uidx1(maps1.p_idx)], ’u0’, devs);

uidx = coco_get_func_data(prob, ’bcs’, ’uidx’);
data.dev_idx = [numel(uidx)-1; numel(uidx)];
prob = coco_add_slot(prob, ’bcs’, @coco_save_data, data, ’save_full’);

prob = coco_add_glue(prob, ’gap’, uidx1(maps1.x1_idx(2)), ...
uidx2(maps2.x0_idx(2)), ’gap’, ’inactive’);

prob = coco_add_pars(prob, ’pars’, ...
[uidx1(maps1.p_idx); uidx(data.dev_idx); ...
uidx1(maps1.x1_idx(1)); uidx2(maps2.x0_idx(1))], ...
{’p1’ ’p2’ ’dev1’ ’dev2’ ’y11e’ ’y21e’});

end

Here, the first call to the coco_add_glue utility appends 2 scalar zero problems correspond-
ing to the equality of the problem parameters associated with each of the two trajectory
segments. Similarly, the second call to the coco_add_glue utility constrains the difference
along the x2 coordinate direction between the final point of the first trajectory segment and
the initial point of the second trajectory segment to the value of the inactive continuation
parameter ’gap’. Together, these reduce the dimensional deficit by 3.

The call to the coco_add_func utility appends zero functions encoded in the function
huxley_bcs shown below. These impose the requirement that the initial point on the first
trajectory segment and the final point on the second trajectory segment lie on the tangent
spaces to the unstable and stable manifolds, respectively, of the corresponding equilibria.

function [data y] = huxley_bcs(prob, data, u)

x10 = u(1:2);
x20 = u(3:4);
par = u(5:6);
dev = u(7:8);

vu = [sqrt(4*par(1)+par(2)^2)-par(2); 2*par(1)];
vu = vu/norm(vu, 2);
vs = [-sqrt(4*(1-par(1))+par(2)^2)-par(2); 2*(1-par(1))];
vs = vs/norm(vs, 2);

y = [x10-dev(1)*vu; x20-([1; 0]+dev(2)*vs)];

end

The call to coco_add_func thus adds four equations to the continuation problem, but also
appends two more variables to the vector of continuation variables, corresponding to the
distances along the two tangent spaces. It follows that the dimensional deficit is reduced
by 2. Following this call to coco_add_func, the coco_get_func_data and coco_add_slot

utilities are used to extract the construction-independent indices to the additional variables,

9

and to ensure that these are stored with each solution file for later reference, as seen in
huxley_sol2het.

The call to coco_add_pars constrains the problem parameters and the deviations, as
well as the first components of the final point of the first trajectory segment and the ini-
tial point of the second segment to the corresponding continuation parameters ’p1’, ’p2’,
’dev1’, ’dev2’, ’y11e’, and ’y21e’, respectively. It follows that the total dimensional
deficit resulting from a call to huxley_isol2het or huxley_sol2het is −1.

The following sequence of commands constructs an approximation to the heteroclinic
connection for the given value of p1, and then continues this under simultaneous variations
in p1 and p2.

>> prob = huxley_isol2het(coco_prob(), segs, dev0);
>> coco(prob, ’huxley1’, [], 1, {’y11e’, ’gap’}, [0 0.5]);
>> prob = huxley_sol2het(coco_prob(), ’huxley1’, 5);
>> coco(prob, ’huxley2’, [], 1, {’y21e’, ’gap’}, [0.5 1]);
>> prob = huxley_sol2het(coco_prob(), ’huxley2’, 2);
>> coco(prob, ’huxley3’, [], 1, {’gap’, ’p2’}, [-0.2 0]);
>> prob = huxley_sol2het(coco_prob(), ’huxley3’, 4);
>> coco(prob, ’huxley4’, [], 1, {’dev1’, ’p2’}, [1e-3 dev0(1)]);
>> prob = huxley_sol2het(coco_prob(), ’huxley4’, 3);
>> coco(prob, ’huxley5’, [], 1, {’dev2’, ’p2’}, [1e-3 dev0(2)]);
>> prob = huxley_sol2het(coco_prob(), ’huxley5’, 3);
>> coco(prob, ’huxley6’, [], 1, {’p1’, ’p2’}, [0.25 0.75]);

Specifically, in the first continuation run, we release ’y11e’ and ’gap’ and allow these to
vary within the given computational domain. The value of 0.5 for ’y11e’ corresponds to
a solution with the final point of the first trajectory segment on the vertical line x1 = p1.
In the second continuation run, we start from this solution and allow ’y21e’ and ’gap’

to vary within the given computational domain. In this case, the value of 0.5 for ’y21e’

corresponds to a solution with the initial point of the second trajectory segment on the
vertical line x1 = p1. We reduce the gap between the two points on x1 = p1 to zero in
the third continuation run. In the following two continuation runs, we reduce the distances,
along the associated tangent spaces, from the initial point of the first trajectory segment and
the final point of the second segment to the corresponding equilibria.

Exercises

1. Use the two-segment approximation to the heteroclinic connection to construct an ini-
tial solution guess for a single-segment continuation problem with appropriate bound-
ary conditions. Comment on the utility of the approach taken in the example and
an alternative reliance on a single-segment continuation problem for all parts of the
analysis.

2. Use the coco_bd_read and coco_bd_col utilities to extract the values of ’p1’ and ’p2’

from the bifurcation data cell array stored during the final continuation run. Graph

10

the corresponding relationship between the problem parameters and compare this to
the theoretical prediction.

3. Use the coll_read_solution utility to extract the trajectory segments for each labeled
solution and generate an animation showing the sequence of consecutive solutions to
the extended continuation problem that lead to the construction of the two-segment
approximation to the heteroclinic connection. You may wish to modify the ’NPR’

setting of the ’cont’ toolbox to increase the frequency of storing solutions to disk.
You may also wish to modify the computational domains used in each continuation
run to restrict continuation to the desired direction along the corresponding solution
manifold.

4. Implement the continuation of heteroclinic connections in the planar vector field

F (x, p) :=

(
1− x21

p1x1 + p2x2

)
analyzed in Doedel, E.J. and Friedman, M.J., “Numerical computation of heteroclinic
orbits,” Journal of Computational and Applied Mathematics, 26, pp. 155–170, 1989.
Use the methodology described in Sect. 7.3.3 of Recipes for Continuation by combining
instances of the ’ep’ and ’coll’ toolboxes (cf. the doedel demo).

4 Harmonic excitation – linode

Consider the linear oscillator with harmonic excitation governed by the explicitly time-
dependent dynamical system

ẋ1 = x2, ẋ2 = −px1 − x2 + cos t (9)

in terms of the vector of state variables x = (x1, x2) ∈ R2 and the scalar problem parameter
p ∈ R. For arbitrary initial conditions, the steady-state behavior is then given by the 2π-
periodic orbit

x1(t) = x∗1(t) :=
sin t+ (p− 1) cos t

p2 − 2p+ 2
, x2(t) = x∗2(t) :=

cos t− (p− 1) sin t

p2 − 2p+ 2
(10)

with L2 norm

‖x∗‖2 :=

√∫ 2π

0

(
x∗21 (t) + x∗22 (t)

)
dt =

√
2π√

p2 − 2p+ 2
. (11)

If we let
x1(t) = x∗1(t) + y1(t), x2(t) = x∗2(t) + y2(t) (12)

11

then the dynamical system
ẏ1 = y2, ẏ2 = −py1 − y2 (13)

is the variational equation about the periodic steady-state trajectory. For the initial condi-
tions y1(0) = 1 and y2(0) = 0, we obtain the solution

y1(t) = y11(t) := e−t/2
(

cosh

(√
1− 4p

2
t

)
+

1√
1− 4p

sinh

(√
1− 4p

2
t

))
(14)

and

y2(t) = y21(t) := − 2pe−t/2√
1− 4p

sinh

(√
1− 4p

2
t

)
. (15)

Similarly, when y1(0) = 0 and y2(0) = 1, we obtain the solution

y1(t) = y12(t) :=
2e−t/2√
1− 4p

sinh

(√
1− 4p

2
t

)
(16)

and
y2(t) = y22(t) := e−t/2

(
cosh

(√
1− 4p

2
t

)
− 1√

1− 4p
sinh

(√
1− 4p

2
t

))
. (17)

The fundamental solution matrix

Φ(t) :=

(
y11(t) y12(t)
y21(t) y22(t)

)
(18)

satisfies the variational equation, and every solution to this equation may be expressed as
Φ(t)C where the column matrix C contains the initial conditions for y1 and y2.

The value of the fundamental solution matrix at t = 2π is the monodromy matrix

M := Φ(2π) =
e−π

p̃

(
p̃ cosh(p̃π) + sinh(p̃π) 2 sinh(p̃π)
−2p sinh(p̃π) p̃ cosh(p̃π)− sinh(p̃π)

)
, (19)

where p̃ =
√

1− 4p. This is the matrix of perturbations to the final point on the solution
trajectory. Its columns correspond to unit perturbations to the initial point along each of the
coordinate directions. The eigenvalues of the monodromy matrix are the Floquet multipliers
of the periodic orbit. The periodic orbit is Poincaré stable provided that these lie within the
unit circle in the complex plane. In the present case, the Floquet multipliers equal

e(−1±p̃)π (20)

and remain within the unit circle for all values of p, as expected.
We encode vectorized implementations of the vector field and its Jacobians with respect

to the state variables, parameters, and time in the functions linode_het, linode_het_DFDX,
linode_het_DFDP, and linode_het_DFDT shown below.

12

function y = linode_het(t, x, p)

x1 = x(1,:);
x2 = x(2,:);
p1 = p(1,:);

y(1,:) = x2;
y(2,:) = -x2-p1.*x1+cos(t);

end

function J = linode_het_DFDX(t, x, p)

x1 = x(1,:);
p1 = p(1,:);

J = zeros(2,2,numel(x1));
J(1,2,:) = 1;
J(2,1,:) = -p1;
J(2,2,:) = -1;

end

function J = linode_het_DFDP(t, x, p)

x1 = x(1,:);

J = zeros(2,1,numel(x1));
J(2,1,:) = -x1;

end

function J = linode_het_DFDT(t, x, p)

x1 = x(1,:);

J = zeros(2,numel(x1));
J(2,:) = -sin(t);

end

The following call to ode45 then generates an initial solution guess for the discretization
of a periodic orbit.

>> [t0 x0] = ode45(@(t,x) linode_het(t,x,1), [0 2*pi], [0; 1]);

The following sequence of commands encodes a trajectory segment continuation problem
using the ode_isol2coll constructor.

>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);
>> prob = coco_set(prob, ’coll’, ’NTST’, 15);
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1);

13

>> coll_args = {@linode_het, @linode_het_DFDX, @linode_het_DFDP, ...
@linode_het_DFDT, t0, x0, ’p’, 1};

>> prob = ode_isol2coll(prob, ’’, coll_args{:});

Here the ’autonomous’ setting of the ’ode’ toolbox is set to false, to indicate the explicit
dependence on the independent variable t. The number of discretization intervals used by
the ’coll’ toolbox is assigned the initial value of 15, and is allowed to change after each
successful step of continuation as a consequence of an adaptive remeshing of the discretiza-
tion. The dimensional deficit of the continuation problem encoded thus far in prob equals
the number of state-space dimensions plus 2, i.e., 4.

We compute a family of periodic orbits under variations in p by invoking the coco entry-
point function as shown in the sequence of commands below.

>> [data uidx] = coco_get_func_data(prob, ’coll’, ’data’, ’uidx’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_func(prob, ’po’, @linode_het_bc, data, ’zero’, ...

’uidx’, uidx([maps.x0_idx; maps.x1_idx; maps.T0_idx; maps.T_idx]));
>> coco(prob, ’het_run1’, [], 1, {’p’ ’coll.err_TF’}, [0.2 2]);

Here, the coco_get_func_data utility extracts the function data structure and the function
dependency index set for the instance of the ’coll’ toolbox constructed previously. As
in the previous section, the data.coll_seg.maps field contains construction-independent
integer indices for distinct elements in the vector of continuation variables that can be used
to refer to the variables representing the initial and final points on the trajectory segment,
as well as to the initial time and the interval length. The subindexing

uidx([maps.x0_idx; maps.x1_idx; maps.T0_idx; maps.T_idx])

constructs a vector of integers referencing the corresponding elements of the vector of contin-
uation variables. These constitute the components of the u input argument to the function
linode_het_bc whose encoding is shown below.

function [data y] = linode_het_bc(prob, data, u)

x0 = u(1:2);
x1 = u(3:4);
T0 = u(5);
T = u(6);

y = [x1(1:2)-x0(1:2); T0; T-2*pi];

end

Since this is added to the continuation problem as a zero function, it follows that a solution
corresponds to a closed curve in state space with interval length 2π. The dimensional deficit
of this continuation problem is 0. Since the desired manifold dimensionality is 1, it follows
that the continuation parameter ’p’ is released during continuation and allowed to vary on
the interval [0.2, 2].

We may restart continuation from one of the periodic orbits obtained in the previous run,

14

as shown in the following commands.

>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1);
>> prob = ode_coll2coll(prob, ’’, ’het_run1’, 3);
>> [data uidx] = coco_get_func_data(prob, ’coll’, ’data’, ’uidx’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_func(prob, ’po’, @linode_het_bc, data, ’zero’, ...

’uidx’, uidx([maps.x0_idx; maps.x1_idx; maps.T0_idx; maps.T_idx]));
>> coco(prob, ’het_run2’, [], 1, {’p’ ’coll.err_TF’}, [0.2 2]);

These commands differ from the previous construction only in the use of the ode_coll2coll
constructor. As an alternative, we may restart continuation from one of the periodic orbits
obtained in a previous run and simultaneously continue one or several solutions to the
corresponding variational equation. The latter describes the linear sensitivity of the periodic
orbit to particular perturbations, and provides a method for analyzing the orbit stability.
Notably, the variational equation is automatically encoded by the ’coll’ toolbox, given the
original vector field and, if available, its Jacobian with respect to the state.

As an example, the following sequence of commands uses the ode_coll2coll constructor
to append two copies of the variational equation with initial solution guesses corresponding
to unit perturbations of the initial point on the solution trajectory along the x1 and x2
coordinate direction, respectively.

>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);
>> prob = coco_set(prob, ’coll’, ’NTST’, 25);
>> prob = ode_coll2coll(prob, ’’, ’het_run1’, 3, ’-var’, eye(2));
>> [data uidx] = coco_get_func_data(prob, ’coll’, ’data’, ’uidx’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_func(prob, ’po’, @linode_het_bc, data, ’zero’, ...

’uidx’, uidx([maps.x0_idx; maps.x1_idx; maps.T0_idx; maps.T_idx]));

In this case, no adaptive remeshing is deployed during continuation, but the number of
discretization intervals is set to 25 in order to maintain an acceptable discretization error
estimate. As long as the perturbations to the initial point are held fixed during continu-
ation, the combined solution to the two variational equations is the fundamental solution
for the linearized problem about the periodic orbit. This is accomplished by the following
commands.

>> [data uidx] = coco_get_func_data(prob, ’coll.var’, ’data’, ’uidx’);
>> prob = coco_add_pars(prob, ’pars’, uidx(data.coll_var.v0_idx(:)), ...

{’s1’ ’s2’ ’s3’ ’s4’});

Here, the function data structure and function dependency index set for the variational
equation zero functions are extracted using the coco_get_func_data utility. The subindex-
ing uidx(data.coll_var.v0_idx(:)) returns a sequence of integers corresponding to the
perturbations to the initial solution point.

We invoke the coco entry-point function to perform simultaneous continuation of the

15

periodic orbit and the corresponding fundamental solution.

>> coco(prob, ’het_run_var’, [], 1, {’p’ ’coll.err_TF’}, [0.05 3]);
>> data = coco_read_solution(’coll’, ’het_run_var’, 2, ’data’);
>> chart = coco_read_solution(’coll.var’, ’het_run_var’, 2, ’chart’);
>> M = chart.x(data.coll_var.v1_idx);
>> p = chart.x(data.coll_seg.maps.p_idx);
>> sort([eig(M) [exp(-pi+sqrt(1-4*p)*pi); exp(-pi-sqrt(1-4*p)*pi)]])

Here, the coco_read_solution utility extracts the stored solution data and part of the
solution chart associated with the variational equations from the second labeled solution
found during the previous run. Next, the monodromy matrix is assigned to the variable
M and the corresponding value of the problem parameter p is assigned to the variable p.
Finally, the eigenvalues of the monodromy matrix obtained using continuation are compared
to their theoretical values.

Exercises

1. Use the ode_isol2coll constructor to continue simultaneously a periodic orbit and the
solutions to the variational equation corresponding to three different initial conditions.
Compare the values at 2π with the theoretical values obtained from the product

M ·
(
x1(0)
x2(0)

)
2. Use the coll_read_solution utility to extract the state-space trajectory corresponding

to one of the solutions found during continuation and graph this together with the
theoretical prediction.

3. The ’coll’ toolbox saves the L2 norm associated with each solution trajectory in the
’||x||_{L_2[0,T]}’ column of the bifurcation data cell array stored to disk during
continuation. Use the coco_bd_read and coco_bd_col utilities to extract the corre-
sponding numerical values from one of the continuation runs and graph their depen-
dence on p together with the theoretical prediction.

4. Repeat the theoretical and computational analysis in this section for the equivalent
autonomous vector field

ẋ1 = x2, ẋ2 = −px1 − x2 + cosx3, ẋ3 = 1

on R2 × S1, where x3 is an angle parameter on S1.

16

5 Bratu’s boundary-value problem – bratu

The ode_isol2coll and ode_coll2coll constructors encode a collocation continuation prob-
lem for a single trajectory segment with no additional constraints on the trajectory segment.
In a boundary-value problem, one or several trajectory segments may be further constrained
by the imposition of conditions on the segment end points. In previous examples, such con-
ditions were introduced separately using the coco_add_func constructor. In this and the
next sections, we demonstrate the use of the ode_isol2bvp and ode_bvp2bvp constructors
to accomplish this task.

Consider, for example, the boundary-value problem

ẋ1 = x2, ẋ2 = −pex1 , x1(0) = 0, x1(1) = 0 (21)

in terms of the vector of state variables x = (x1, x2) ∈ R2 and the scalar problem parameter
p ∈ R. A solution to this boundary-value problem is of the form

x1(t) = ln

(
1 + coshC

1 + cosh (C(1− 2t))

)
, x2(t) = 2C tanh

(
C

2
(1− 2t)

)
(22)

provided that

p =
4C2

1 + coshC
. (23)

For C ≥ 0, the right-hand side of (23) has a unique global maximum at C = C∗ ≈ 2.399,
corresponding to p = p∗ ≈ 3.514, and decays to 0 as C → ∞. It follows that there exist
two solutions of the given form to the boundary-value problem for 0 < p < p∗ and none for
p > p∗. When p = 0, a corresponding solution is given by (x1(t), x2(t)) = (0, 0) for all t.

We construct a family of solutions to the boundary-value problem for admissible values
of p by starting continuation with the explicit solution for p = 0. To this end, we encode the
vector field in the anonymous function brat.

>> brat = @(x,p) [x(2,:); -p(1,:).*exp(x(1,:))];

The encoding is vectorized and autonomous. We encode the boundary conditions and their
derivatives with respect to the interval length, the coordinates of the two end points, and the
problem parameters in the anonymous functions brat_bc and brat_bc_DFDX, respectively.

>> brat_bc = @(~,T,x0,x1,p) [T-1; x0(1); x1(1)];
>> brat_bc_DFDX = @(~,T,x0,x1,p) [1,0,0,0,0,0; 0,1,0,0,0,0; 0,0,0,1,0,0];

In particular, we require that the interval length T equal 1 and that the first component
of each of the end points equal 0. The Jacobian encoded in brat_bc_DFDX is a 3 × 6 two-
dimensional array, since the number of scalar boundary conditions is 3 and the number of
arguments equals 6(= 1 + 2 + 2 + 1). The ~ in the first input argument is a placeholder for
data specific to the encoding of the boundary conditions.

We compute a family of solutions to the boundary-value problem under variations in p
by constructing a constrained single-segment continuation problem using the ode_isol2bvp

17

constructor, and invoking the coco entry-point function as shown in the sequence of com-
mands below.

>> prob = coco_prob();
>> prob = coco_set(prob, ’cont’, ’PtMX’, 50);
>> coll_args = {brat, [0;1], zeros(2), 0};
>> bvp_args = [coll_args, ’p’, {brat_bc, brat_bc_DFDX}];
>> bd = coco(prob, ’brat1’, @ode_isol2bvp, bvp_args{:}, 1, ’p’, [0 4]);

Here, the coll_args variable contains the input argument to a single embedded call to
the ode_isol2coll constructor. Notably, this omits the parameter name ’p’, which is
inserted into the bvp_args variable after coll_args and before a cell array containing the
function names of the encodings of the boundary conditions and their Jacobian. Since the
number of boundary conditions equals the dimensional deficit of the trajectory segment
continuation problem, the total dimensional deficit of the continuation problem constructed
by ode_isol2bvp is 0. The screen output includes the detection of a fold point along the
solution manifold, where ’p’ is approximately equal to 3.514, as predicted.

We visualize the result of continuation by extracting information from the bifurcation
data file stored during continuation using the coco_bd_read core utility.

>> labs = coco_bd_labs(bd);
>> figure(1); clf; hold on; grid on; box on; axis([0 1 -0.1 1.5])
>> for lab=labs

sol = bvp_read_solution(’’, ’brat1’, lab);
plot(sol{1}.tbp, sol{1}.xbp(:,1), ’LineStyle’, ’-’, ’LineWidth’, 2, ...

’Color’, ’black’, ’Marker’, ’.’, ’MarkerSize’, 12)
end

>> hold off

Here, bd is a cell array consisting of a row of string headers and a nonempty collection of
subsequent rows of data. The coco_bd_labs utility extracts integer labels of solutions stored
to disk. The bvp_read_solution utility reads solution data from each of the corresponding
solution files, and assigns a sequence of time instants and corresponding points in state space
to the tbp and xbp fields of the first element of the sol structure array.

As shown in the following sequence of commands, we can restart continuation from a
solution stored to disk during the previous continuation run.

>> prob = coco_prob();
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 5);
>> coco(prob, ’brat2’, @ode_bvp2bvp, ’brat1’, 6, 1, ’p’, [1 5]);

Here, the two arguments following the @ode_bvp2bvp function handle identify the run name
and integer label for the corresponding solution file. The call to the coco_set utility ensures
an adaptive remeshing of the trajectory discretization after every five successful steps of
continuation.

18

Exercises

1. Use the ode_isol2bvp constructor to build the continuation problem corresponding
to the linear oscillator in the previous section. Try both the autonomous and nonau-
tonomous encodings of the vector field and include explicit Jacobians.

2. Perform continuation on the domain C ∈ [0, 5] of solutions to the boundary-value
problem

ẋ1 = x2, ẋ2 = − 4C2

1 + coshC
ex1 , x1(0) = 0, x1(1) = 0

using as initial solution guess a two-point discretization of (x1(t), x2(t)) = (0, 0) for
all t when C = 0. Make appropriate changes to the ’NTST’ and ’NAdapt’ settings of
the ’coll’ and ’cont’ toolboxes to avoid termination due to excessive discretization
errors.

3. Restart continuation using the ode_BP2bvp constructor from the branch point detected
in the previous exercise. What happens when C → 0? Can you find an explicit
expression for x1(t) and x2(t) along this second branch?

4. Use continuation to investigate solutions to the boundary-value problem for p < 0.

6 A moving Poincaré section – lienard

Consider the autonomous dynamical system

ẋ1 = x2, ẋ2 = px2 − x32 − x1 (24)

in terms of the vector of state variables x = (x1, x2) ∈ R2 and the scalar problem parameter
p ∈ R. This is encoded in the function lienard shown below.

function y = lienard(x, p)

x1 = x(1,:);
x2 = x(2,:);
p1 = p(1,:);

y(1,:) = x2;
y(2,:) = p1.*x2-x2.^3-x1;

end

As long as p ≥ 0, there exists a periodic orbit enclosing the origin. In contrast to the linear
oscillator considered in a previous section, the orbit period is unknown. Moreover, periodic
boundary conditions do not uniquely identify the location of the trajectory segment end
points along the corresponding closed curve in the plane.

19

A unique parameterization of the periodic orbit is obtained by imposing a Poincaré section
condition. Specifically, we require that the initial point on the trajectory segment lie on a
hyperplane through some reference point and perpendicular to the vector field evaluated at
the reference point. We encode the corresponding boundary conditions and their Jacobian
in the functions per_bc and per_bc_DFDX shown below.

function fbc = per_bc(data, T, x0, x1, p)
fbc = [x0-x1; data.f0*(x0-data.x0)];

end

function Jbc = per_bc_DFDX(data, T, x0, x1, p)
Jbc = data.J;

end

Notably, both encodings rely on the content of the data input argument, which must be
populated and, as necessary, updated during continuation. To this end, consider the function
per_bc_update shown below.

function data = per_bc_update(data, T, x0, x1, p)

n = numel(x0);
q = numel(p);

data.x0 = x0;
data.f0 = data.fhan(x0,p)’;
data.J = [sparse(n,1), speye(n,n), -speye(n,n), sparse(n,q);

sparse(1,1), data.f0, sparse(1,n), sparse(1,q)];

end

This assigns content to the x0, f0, and J fields of the data output argument corresponding to
a parameterization of the hyperplane in terms of the point x0 in the second input argument.
The following sequence of commands then initializes the Poincaré section.

>> p0 = 1;
>> x0 = [0.4; -1.2];
>> data = struct();
>> data.fhan = @lienard;
>> data = per_bc_update(data, [], x0, [], p0);

We proceed to construct the corresponding boundary-value problem, as shown in the
following sequence of commands.

>> f = @(t,x) lienard(x, p0);
>> [t0 x0] = ode45(f, [0 6.7], x0);
>> coll_args = { @lienard, t0, x0, p0 };
>> bvp_args = { @per_bc, @per_bc_DFDX, data, @per_bc_update };
>> prob = coco_prob();
>> prob = coco_set(prob, ’coll’, ’NTST’, 30);
>> prob = ode_isol2bvp(prob, ’’, coll_args{:}, ’p’, bvp_args{:});

Here, the inclusion of data and the @per_bc_update function handles in the bvp_args input

20

argument ensures that the content of data is available to per_bc and per_bc_DFDX, and
updated before each new continuation step. Specifically, the reference point of the Poincaré
section, stored in data.x0 equals the initial point along the trajectory segment associated
with the current solution from which continuation proceeds.

Continuation along a family of periodic orbits with adaptive remeshing every ten contin-
uation steps is achieved using the following commands.

>> prob = coco_set(prob, ’cont’, ’NAdapt’, 10);
>> bd = coco(prob, ’moving’, [], 1, ’p’, [-1 1]);

We visualize individual labeled solutions, as well as the location of the reference points of
the sequence of Poincaré sections using the following commands.

>> labs = coco_bd_labs(bd);
>> x0 = [];
>> figure(1); clf; hold on; grid on; box on; axis([-1.75 1.75 -1.4 1.23])
>> for lab=labs

sol = bvp_read_solution(’’, ’moving’, lab);
plot(sol{1}.xbp(:,1), sol{1}.xbp(:,2), ’LineStyle’, ’-’, ’LineWidth’, 2, ...
’Color’, [0.7 0.7 0.7], ’Marker’, ’.’, ’MarkerSize’, 12)

x0 = [x0 ; sol{1}.xbp(1,:)];
end

>> plot(x0(:,1), x0(:,2), ’LineStyle’, ’none’, ’LineWidth’, 2, ...
’Color’, ’black’, ’Marker’, ’.’, ’MarkerSize’, 15)

>> hold off

Here, the bvp_read_solution utility extracts the individual trajectory segments and stores
the corresponding discretization in sol.

Exercises

1. Repeat the construction of the boundary-value problem, but omit the inclusion of
the per_bc_update function. Visualize the result of continuation and describe your
observations.

2. Suppose that continuation along a one-dimensional family of periodic orbits includes
the occurrence of a tangency with a fixed Poincaré section. Explain why this manifests
itself as a geometric fold along the solution manifold.

3. Apply the ode_isol2bvp and ode_bvp2bvp constructors to the continuation of periodic
orbits of the dynamical system

ẋ1 = x2, ẋ2 =

(
1

2
− x22

)
εx2 − x1

under variations in ε on the computational domain [−10, 10]. Graph the variations in
the corresponding Floquet multipliers against ε.

21

7 Invariant curves and tori – torus

Consider the non-autonomous dynamical system ẋ = F (t, x, p), where

F (t, x, p) =

−Ωx2 + x1

(
1 +

√
x21 + x22(cosωt− 1)

)
Ωx1 + x2

(
1 +

√
x21 + x22(cosωt− 1)

)
 (25)

in terms of the vector of state variables x = (x1, x2) ∈ R2 and the vector of problem
parameters (ω,Ω) ∈ R2. In polar coordinates (ρ, ψ), where x1 = ρ cosψ and x2 = ρ sinψ, it
follows that

ρ̇ = ρ
(
1 + ρ(cosωt− 1)

)
, ψ̇ = Ω (26)

and, consequently, that

ρ(t) =
etρ0(1 + ω2)

1 + ω2 − ω2ρ0 + etρ0
(
1 + ω2 − cosωt− ω sinωt

) , ψ(t) = Ωt+ ψ0 (27)

in terms of the initial conditions (ρ0, ψ0). In particular, for t� 1,

ρ(t) ≈ ρ∗(t) :=
1 + ω2

1 + ω2 − cosωt− ω sinωt
(28)

corresponding to motion on an invariant two-dimensional torus T described by the torus
function u : S× S→ T, where

u : (θ1, θ2) 7→
(
ρ∗(θ2/ω) cos θ1, ρ

∗(θ2/ω) sin θ1
)
, (29)

and by the two frequencies Ω and ω, such that the dynamics on the torus correspond to

dθ1
dt

= Ω, and
dθ2
dt

= ω. (30)

In particular,

Ω
∂u

∂θ1
(θ1, θ2) + ω

∂u

∂θ2
(θ1, θ2) = F (θ2/ω, u(θ1, θ2), p). (31)

For a given rotation number % = Ω/ω, the dynamics on the torus is a parallel flow, consisting
of either i) torus-covering quasiperiodic trajectories, in the case that % is irrational, or ii) a
continuous family of periodic orbits, in the case that % is rational.

The definition υ(ϕ, τ) := u(ϕ+ Ωτ, ωτ) implies that

υ(ϕ, 0) = u(ϕ, 0), υ(ϕ, 2π/ω) = u(ϕ+ 2π%, 0), and
∂υ

∂τ
= F (τ, υ(ϕ, τ), p). (32)

Here, u(ϕ, 0) is the circle in R2 centered at the origin and with radius (1 + ω2)/ω2 parame-
terized by ϕ ∈ [0, 2π]. It follows that this circle is invariant under the mapping from τ = 0
to τ = 2π/ω. On this invariant circle, the mapping is a rigid rotation by 2π%.

22

We may approximate a component of υ(ϕ, 0) by a truncated Fourier expansion

χ(ϕ) = a0 +
N∑
k=1

(
ak cos kϕ+ bk sin kϕ

)
, (33)

where

a0
a1
b1
...
aN
bN

= F ·

χ(0)

χ
(

2π
2N+1

)
...

χ
(

4πN
2N+1

)

 (34)

in terms of the discrete Fourier transform matrix

F =
1

2N + 1

1 1 · · · 1

2 2 cos
(

2π
2N+1

)
· · · 2 cos

(
4πN
2N+1

)
0 2 sin

(
2π

2N+1

)
· · · 2 sin

(
4πN
2N+1

)
...

...

2 2 cos
(

2πN
2N+1

)
· · · 2 cos

(
4πN2

2N+1

)
0 2 sin

(
2πN
2N+1

)
· · · 2 sin

(
4πN2

2N+1

)

. (35)

On the other hand,

χ(ϕ+ 2π%) = a′0 +
N∑
k=1

(
a′k cos kϕ+ b′k sin kϕ

)
(36)

implies that

a′0
a′1
b′1
...
a′N
b′N

= R ·

a0
a1
b1
...
aN
bN

(37)

in terms of the rotation matrix

R =

1
cos 2π% sin 2π%
− sin 2π% cos 2π%

. . .
cos 2πN% sin 2πN%
− sin 2πN% cos 2πN%

. (38)

23

On the mesh ϕj := 2π(j − 1)/(2N + 1), it follows that

(
F ⊗ I2

)
·

 υ (ϕ1, 2π/ω)
...

υ (ϕ2N+1, 2π/ω)

 =
(

(R · F)⊗ I2
)
·

 υ (ϕ1, 0)
...

υ (ϕ2N+1, 0)

 . (39)

and
dυ

dτ
(ϕj, τ) = F (ωτ, υ (ϕj, τ) , p) (40)

for j = 1, . . . , 2N + 1. We may eliminate the degeneracy associated with arbitrary shifts in
ϕ by demanding that υ2(0, 0) = 0.

We proceed to perform continuation of an approximate Fourier representation of the
function υ(ϕ, 0). The vector field and its Jacobians with respect to the state variables, the
problem parameters, and time are encoded in the functions torus, torus_DFDX, torus_DFDP,
and torus_DFDT shown below.

function y = torus(t, x, p)

x1 = x(1,:);
x2 = x(2,:);
om = p(1,:);
Om = p(2,:);

r = sqrt(x1.^2+x2.^2);
y(1,:) = -Om.*x2+x1.*(1+r.*(cos(om.*t)-1));
y(2,:) = Om.*x1+x2.*(1+r.*(cos(om.*t)-1));

end

function J = torus_DFDX(t, x, p)

x1 = x(1,:);
x2 = x(2,:);
om = p(1,:);
Om = p(2,:);

r = sqrt(x1.^2+x2.^2);
J = zeros(2,2,numel(x1));
J(1,1,:) = (r+(r.^2+x1.^2).*(cos(om.*t)-1))./r;
J(1,2,:) = (-Om.*r+x1.*x2.*(cos(om.*t)-1))./r;
J(2,1,:) = (Om.*r+x1.*x2.*(cos(om.*t)-1))./r;
J(2,2,:) = (r+(r.^2+x2.^2).*(cos(om.*t)-1))./r;

end

function J = torus_DFDP(t, x, p)

x1 = x(1,:);
x2 = x(2,:);
om = p(1,:);

24

r = sqrt(x1.^2+x2.^2);
J = zeros(2,2,numel(x1));
J(1,1,:) = -r.*t.*x1.*sin(om.*t);
J(1,2,:) = -x2;
J(2,1,:) = -r.*t.*x2.*sin(om.*t);
J(2,2,:) = x1;

end

function J = torus_DFDT(t, x, p)

x1 = x(1,:);
x2 = x(2,:);
om = p(1,:);

r = sqrt(x1.^2+x2.^2);
J = zeros(2,numel(x1));
J(1,:) = -x1.*r.*om.*sin(om.*t);
J(2,:) = -x2.*r.*om.*sin(om.*t);

end

We initialize a cell array of input arguments for ode_isol2coll in the following sequence of
commands.

>> om = 1.5;
>> Om = 1;
>> N = 15;
>> vphi = 2*pi*linspace(0,1,2*N+2);
>> tau = 2*pi/om*linspace(0,1,10*(2*N+1))’;
>> rho = (1+om^2)./(1+om^2-cos(om*tau)-om*sin(om*tau));
>> coll = cell(1,2*N+1);
>> for i=1:2*N+1

up = repmat(rho, [1 2]).*[cos(Om*tau+vphi(i)) sin(Om*tau+vphi(i))];
coll{i} = {@torus @torus_DFDX @torus_DFDP @torus_DFDT tau up [om Om]};

end

Here, the variable rho contains an evenly spaced sample of values of ρ∗(τ) for τ on the
interval [0, 2π/ω]. For each value of ϕ, the corresponding values for υ are stored in up.

The discrete Fourier transform and rotation matrices F and R are constructed in the
following sequence of commands.

>> Th = 2*pi*(0:2*N)/(2*N+1);
>> Th = kron(1:N, Th’);
>> F = [ones(2*N+1,1) 2*reshape([cos(Th);sin(Th)], [2*N+1 2*N])]’/(2*N+1);
>> varrho = 1/1.51111;
>> Th = (1:N)*2*pi*varrho;
>> SIN = [zeros(size(Th)) ; sin(Th)];
>> R = diag([1 kron(cos(Th), [1 1])]);
>> R = R + diag(SIN(:), +1)- diag(SIN(:), -1);

We store F⊗I2 and (R · F)⊗I2 in the variable data and proceed to construct the appropriate
constrained multisegment boundary-value problem using the ode_isol2bvp constructor, as

25

shown below.

>> data = struct();
>> data.F = kron(F, eye(2));
>> data.RF = kron(R*F, eye(2));
>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);
>> prob = coco_set(prob, ’coll’, ’NTST’, 20);
>> prob = ode_isol2bvp(prob, ’’, coll, {’om’ ’Om’}, @torus_bc, data, ’F+dF’);

Here, the ’F+dF’ option is invoked to indicate that the function encoding the boundary
conditions also returns their Jacobian, as shown in the encoding of torus_bc below.

function [fbc, Jbc] = torus_bc(data, T0, T, x0, x1, p)

fbc = [T0; T-2*pi/p(1); data.F*x1-data.RF*x0; x0(2)];

nt = numel(T);
nx = numel(x0);
np = numel(p);

J1 = zeros(1,2*nt+2*nx+np);
J1(1,2*nt+2) = 1;

Jbc = [
eye(nt), zeros(nt,nt+2*nx+np);
zeros(nt), eye(nt), zeros(nt,2*nx), 2*pi/p(1)^2*ones(nt,1), zeros(nt,np-1);
zeros(nx,2*nt), -data.RF, data.F, zeros(nx,np);
J1];

end

Notably, the rotation number % is not included among the continuation variables, so contin-
uation results in a family of discrete Fourier representations for fixed ratio Ω/ω, as shown
by executing the following commands.

>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1, ’h_max’, 10);
>> coco(prob, ’torus’, [], 1, {’om’ ’Om’}, [0.5 1.5]);

Exercises

1. Use the explicit time history in (27) to encode an algebraic continuation problem
that is equivalent to the constrained multisegment boundary-value problem in this
section, but that eliminates the need to invoke the ’coll’ toolbox for the approximate
discretization of individual solution trajectories. Compare the results of continuation
using the two alternative constructions.

2. Use % = 1.5 in the construction of the constrained multisegment boundary-value prob-
lem and explore the dependence on N . Explain your observations by comparing and
contrasting with the behavior of the algebraic implementation in the previous exercise.

26

3. Construct a continuation problem in which the rotation number % is included among
the continuation variables.

4. Repeat the construction of a constrained multisegment boundary-value problem for
the continuation of invariant tori corresponding to the vector field

F (t, x, p) =

(
x2

cx2(1− x21)− x1 + a cosωt

)
.

8 Optimization – linode_optim

Consider the problem of finding stationary points of the functional (x(t), k, θ) 7→ x2(0) along
a manifold of periodic solutions of the dynamical system

ẋ1 = x2, ẋ2 = −x2 − kx1 + cos(t+ θ) (41)

with period 2π. In this case, periodic solutions to this dynamical system are of the form

x1(t) =
(k − 1) cos(t+ θ) + sin(t+ θ)

(k − 1)2 + 1
, x2(t) =

cos(t+ θ) + (1− k) sin(t+ θ)

(k − 1)2 + 1
. (42)

Consequently, stationary points occur wherever

2(1− k) cos θ + k(k − 2) sin θ

((k − 1)2 + 1)2
=

(1− k) cos θ − sin θ

(k − 1)2 + 1
= 0, (43)

i.e., for k = 1 and θ = nπ for any integer n.
Alternatively, consider the Lagrangian

L (x(t), k, θ, µk, µθ, µv, `ode(t), `bc, ηk, ηθ, ηv) = µv +

∫ 2π

0

`ode,1(t)
(
ẋ1(t)− x2(t)

)
dt

+

∫ 2π

0

`ode,2(t)
(
ẋ2(t) + x2(t) + kx1(t)− cos(t+ θ)

)
dt+ `bc,1

(
x1(0)− x1(2π)

)
+ `bc,2

(
x2(0)− x2(2π)

)
+ ηk (k − µk) + ηθ (θ − µθ) + ηv (x2(0)− µv) (44)

in terms of the continuation parameters µk, µθ, and µv, and the Lagrange multipliers `ode,
`bc, ηk, ηθ, and ηv. Necessary conditions for stationary points along the constraint manifold
correspond to points (x(t), k, θ, µk, µθ, µv, `ode(t), `bc, ηk, ηθ, ηv) for which δL = 0 for any
infinitesimal variations δx(t), δk, δθ, δµk, δµθ, δµv, δ`ode(t), δ`bc, δηk, δηθ, and δηv. In this

27

case, these conditions take the form

ẋ1 = x2, ẋ2 = −x2 − kx1 + cos(t+ θ), x1(0) = x1(2π), x2(0) = x2(2π), (45)
k − µk = 0, θ − µθ = 0, x2(0)− µv = 0, (46)

− ˙̀
ode,1 + k`ode,2 = 0, − ˙̀

ode,2 − `ode,1 + `ode,2 = 0, (47)
`ode,1(2π)− `bc,1 = 0, −`ode,1(0) + `bc,1 = 0, (48)

`ode,2(2π)− `bc,2 = 0, −`ode,2(0) + `bc,2 + ηv = 0, (49)∫ 2π

0

`ode,2(t)x1(t) dt+ ηk = 0,

∫ 2π

0

`ode,2(t) sin(t+ θ) dt+ ηθ = 0, (50)

1− ηv = 0, and ηk = ηθ = 0. Solutions to these conditions are given by

x1(t) = (−1)n sin t, x2(t) = (−1)n cos t, k = µk = 1, θ = µθ = nπ, µv = (−1)n, (51)

`ode,1(t) = et/2−π
eπ sin

(√
3
2

(2π − t)
)

+ sin
√
3t
2√

3(coshπ − cos
√

3π)
, `bc,1 =

sin
√

3π√
3(coshπ − cos

√
3π)

, (52)

`ode,2(t) = e
t
2
−π

3 cos
√
3t
2
− 3eπ cos

(√
3
2

(2π − t)
)

+
√

3
(
eπ sin

(√
3
2

(2π − t)
)

+ sin
√
3t
2

)
6(coshπ − cos

√
3π)

,

(53)

`bc,2 =
3 cos

√
3π +

√
3 sin

√
3π − 3eπ

6(coshπ − cos
√

3π)
, ηk = ηθ = 0, ηv = 1. (54)

Stationary points along the solution manifold may be located using a method of staged
continuation applied to the extended continuation problem obtained by combining (45)-(50)
with ηk − νk = 0, ηθ − νθ = 0, and ηv − νv = 0 in terms of the continuation variables
(x(t), k, θ, `ode(t), `bc, ηk, ηθ, ηv) and continuation parameters (µk, µθ, µv, νk, νθ, νv). The di-
mensional deficit of this extended continuation problem equals 3. We get one-dimensional
solution manifolds by designating two of the continuation parameters as inactive.

To simplify the analysis, we first eliminate the continuation variables x(t), k, θ, `ode(t),
`bc, ηk, and ηθ from (45)-(50) and obtain

x1(t) =
(µk − 1) cos(t+ µθ) + sin(t+ µθ)

(µk − 1)2 + 1
, x2(t) =

cos(t+ µθ) + (1− µk) sin(t+ µθ)

(µk − 1)2 + 1
, (55)

k = µk, θ = µθ, `bc,1 =
ηvµk sin µ̃kπ

µ̃k (coshπ − cos µ̃kπ)
, `bc,2 =

(
sin µ̃kπ − µ̃k sinhπ

µ̃k (coshπ − cos µ̃kπ)
− 1

)
ηv
2
, (56)

ηk = −2(1− µk) cosµθ + µk(µk − 2) sinµθ
((µk − 1)2 + 1)2

ηv, ηθ = −(1− µk) cosµθ − sinµθ
(µk − 1)2 + 1

ηv, (57)

`ode,1(t) = et/2−π
µkηv

(
sin µ̃kt

2
+ eπ sin µ̃k

2
(2π − t)

)
µ̃k (coshπ − cos µ̃kπ)

, (58)

28

and

`ode,2(t) = et/2−π
ηv
(
µ̃k cos µ̃kt

2
+ sin µ̃kt

2
+ eπ

(
sin µ̃k

2
(2π − t)− µ̃k cos µ̃k

2
(2π − t)

))
2µ̃k (coshπ − cos µ̃kπ)

, (59)

where µ̃k =
√

4µk − 1. The remaining conditions then imply that

cosµθ + (1− µk) sinµθ
(µk − 1)2 + 1

− µv = 0, (60)

−2(1− µk) cosµθ + µk(µk − 2) sinµθ
((µk − 1)2 + 1)2

ηv − νk = 0, (61)

−(1− µk) cosµθ − sinµθ
(µk − 1)2 + 1

ηv − νθ = 0 (62)

ηv − νv = 0. (63)

Now suppose that µv, µk, νv, and νθ are active and µθ and νk are inactive. Then, if
νk = 0, solutions to the corresponding restricted continuation problem are located on one of
the three one-dimensional manifolds

µv =
cosµθ + (1− µk) sinµθ

(µk − 1)2 + 1
, ηv = νv = νθ = 0, (64)

µv = cos2
µθ
2
, µk = 1− tan

µθ
2
, ηv = νv, νθ =

νv
2

sinµθ, (65)

or
µv = − sin2 µθ

2
, µk = 1 + cot

µθ
2
, ηv = νv, νθ =

νv
2

sinµθ. (66)

The manifold in (64) intersects the manifolds in (65) and (66) at the points

µv = cos2
µθ
2
, µk = 1− tan

µθ
2
, ηv = νv = νθ = 0, (67)

and
µv = − sin2 µθ

2
, µk = 1 + cot

µθ
2
, ηv = νv = νθ = 0, (68)

respectively, corresponding to local extrema in the value of µv along the first manifold.
Notably, there is a unique point on each of the latter manifolds where ηv = 1. If we

consider the restricted continuation problem obtained with µv, µk, µθ, and νθ active and
νk and νv inactive and equal to 0 and 1, respectively, then solutions are located on the
one-dimensional manifolds

µv = cos2
µθ
2
, µk = 1− tan

µθ
2
, ηv = 1, νθ =

1

2
sinµθ, (69)

and
µv = − sin2 µθ

2
, µk = 1 + cot

µθ
2
, ηv = 1, νθ =

1

2
sinµθ. (70)

29

Notably, the points with µθ = 2nπ on the first manifold and µθ = (2n + 1)π on the second
manifold, for any integer n, coincide with the stationary points found previously.

We proceed to implement the extended continuation problem in coco using the appro-
priate ’coll’ toolbox constructors. We encode the vector field and its derivatives in the
’ode’ compatible functions below.

function y = linode(t, x, p)

x1 = x(1,:);
x2 = x(2,:);
k = p(1,:);
th = p(2,:);

y(1,:) = x2;
y(2,:) = -x2-k.*x1+cos(t+th);

end

function J = linode_dx(t, x, p)

k = p(1,:);

J = zeros(2,2,numel(t));
J(1,2,:) = 1;
J(2,1,:) = -k;
J(2,2,:) = -1;

end

function J = linode_dp(t, x, p)

x1 = x(1,:);
th = p(2,:);

J = zeros(2,2,numel(t));
J(2,1,:) = -x1;
J(2,2,:) = -sin(t+th);

end

function J = linode_dt(t, x, p)

th = p(2,:);

J = zeros(2,numel(t));
J(2,:) = -sin(t+th);

end

function dJ = linode_dxdx(t, x, p)
dJ = zeros(2,2,2,numel(t));
end

30

function dJ = linode_dxdp(t, x, p)

dJ = zeros(2,2,2,numel(t));
dJ(2,1,1,:) = -1;

end

function dJ = linode_dpdp(t, x, p)

th = p(2,:);

dJ = zeros(2,2,2,numel(t));
dJ(2,2,2,:) = -cos(t+th);

end

function dJ = linode_dtdx(t, x, p)
dJ = zeros(2,2,numel(t));
end

function dJ = linode_dtdp(t, x, p)

th = p(2,:);

dJ = zeros(2,2,numel(t));
dJ(2,2,:) = -cos(t+th);

end

function dJ = linode_dtdt(t, x, p)

th = p(2,:);

dJ = zeros(2,numel(t));
dJ(2,:) = -cos(t+th);

end

In the first stage of construction, we use the ode_isol2coll toolbox constructor to encode
the trajectory constraint, as shown in the sequence of commands below.

>> prob = coco_prob;
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);
>> [t0, x0] = ode45(@(t,x) linode(t, x, [0.98; 0.3]), [0 2*pi], ...

[0.276303; 0.960863]);
>> coll_args = {@linode, @linode_dx, @linode_dp, @linode_dt, ...

@linode_dxdx, @linode_dxdp, @linode_dpdp, @linode_dtdx, ...
@linode_dtdp, @linode_dtdt, t0, x0, {’k’ ’th’}, [0.98; 0.3]};

>> prob1 = ode_isol2coll(prob, ’’, coll_args{:});

Here ’k’ and ’th’ represent the continuation parameters µk and µθ, respectively. We proceed
to append boundary conditions defined in terms of the coco-compatible function encodings

31

shown below.

function [data, y] = linode_bc(prob, data, u)

x0 = u(1:2);
x1 = u(3:4);
T0 = u(5);
T = u(6);

y = [x1(1:2)-x0(1:2); T0; T-2*pi];

end

function [data, J] = linode_bc_du(prob, data, u)
J = [-1 0 1 0 0 0; 0 -1 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1];
end

function [data, dJ] = linode_bc_dudu(prob, data, u)
dJ = zeros(4,6,6);
end

As shown in the commands below, we associate ’v’ with the continuation parameter µv.

>> [data, uidx] = coco_get_func_data(prob1, ’coll’, ’data’, ’uidx’);
>> maps = data.coll_seg.maps;
>> bc_funcs = {@linode_bc, @linode_bc_du, @linode_bc_dudu};
>> prob1 = coco_add_func(prob1, ’po’, bc_funcs{:}, [], ’zero’, ’uidx’, ...

uidx([maps.x0_idx; maps.x1_idx; maps.T0_idx; maps.T_idx]));
>> prob1 = coco_add_pars(prob1, ’vel’, uidx(maps.x0_idx(2)), ’v’);

The contributions to the adjoint equations corresponding to the zero and monitor func-
tions associated with the single instance of the ’coll’ toolbox are appended to the contin-
uation problem using the adjt_isol2coll constructor, as shown below.

>> prob1 = adjt_isol2coll(prob1, ’’);

This call initializes all Lagrange multipliers at 0 and introduces the continuation parame-
ters ’d.k’ and ’d.th’ corresponding to νk and νθ, respectively. The following sequence of
commands append the contributions to the adjoint equations corresponding to the boundary
conditions and definition of the ’v’ continuation parameter.

>> [data, axidx] = coco_get_adjt_data(prob1, ’coll’, ’data’, ’axidx’);
>> opt = data.coll_opt;
>> prob1 = coco_add_adjt(prob1, ’po’, ’aidx’, ...

axidx([opt.x0_idx; opt.x1_idx; opt.T0_idx; opt.T_idx]));
>> prob1 = coco_add_adjt(prob1, ’vel’, ’d.v’, ’aidx’, axidx(opt.x0_idx(2)));

We use the ’aidx’ flag in each call to coco_add_adjt to identify equations associated with
variations in some subset of the continuation variables.

The first stage of continuation is now realized using the following call to the coco entry-
point function.

32

>> coco(prob1, ’linode1’, [], 1, {’v’ ’k’ ’d.v’ ’d.th’}, [0.9 2]);

We continue along a secondary branch through the branch point found in the first run by
reconstructing the augmented continuation problem using the following sequence of com-
mands.

>> bd1 = coco_bd_read(’linode1’);
>> BPlab = coco_bd_labs(bd1, ’BP’);
>> prob2 = ode_BP2coll(prob, ’’, ’linode1’, BPlab(1));
>> [data, uidx] = coco_get_func_data(prob2, ’coll’, ’data’, ’uidx’);
>> maps = data.coll_seg.maps;
>> prob2 = coco_add_func(prob2, ’po’, bc_funcs{:}, data, ’zero’, ’uidx’, ...

uidx([maps.x0_idx; maps.x1_idx; maps.T0_idx; maps.T_idx]));
>> prob2 = coco_add_pars(prob2, ’vel’, uidx(maps.x0_idx(2)), ’v’);
>> chart = coco_read_solution(’linode1’, BPlab(1), ’chart’);
>> cdata = coco_get_chart_data(chart, ’lsol’);
>> prob2 = adjt_BP2coll(prob2, ’’, ’linode1’, BPlab(1));
>> [chart, lidx] = coco_read_adjoint(’po’, ’linode1’, BPlab(1), ...

’chart’, ’lidx’);
>> [data, axidx] = coco_get_adjt_data(prob2, ’coll’, ’data’, ’axidx’);
>> opt = data.coll_opt;
>> prob2 = coco_add_adjt(prob2, ’po’, ’aidx’, ...

axidx([opt.x0_idx; opt.x1_idx; opt.T0_idx; opt.T_idx]), ...
’l0’, chart.x, ’tl0’, cdata.v(lidx));

>> [chart, lidx] = coco_read_adjoint(’vel’, ’linode1’, BPlab(1), ...
’chart’, ’lidx’);

>> prob2 = coco_add_adjt(prob2, ’vel’, ’d.v’, ’aidx’, ...
axidx(opt.x0_idx(2)), ’l0’, chart.x, ’tl0’, cdata.v(lidx));

>> coco(prob2, ’linode2’, [], 1, {’d.v’, ’v’, ’k’ ’d.th’}, {[0 1], [.9 2]});

We use the coco_get_chart_data utility to extract a candidate tangent vector that is per-
pendicular to the primary solution branch and in the plane spanned by the tangent vectors to
the primary and secondary solution branches. We use the coco_read_adjoint utility to ex-
tract initial values for the Lagrange multipliers from the stored solution at the branch point,
as well as the corresponding integer indices in the overall vector of continuation variables.

The third, and final, stage of continuation results from the sequence of commands shown
below.

>> bd2 = coco_bd_read(’linode2’);
>> lab = coco_bd_labs(bd2, ’EP’);
>> prob3 = ode_coll2coll(prob, ’’, ’linode2’, lab(2));
>> [data, uidx] = coco_get_func_data(prob3, ’coll’, ’data’, ’uidx’);
>> maps = data.coll_seg.maps;
>> prob3 = coco_add_func(prob3, ’po’, bc_funcs{:}, data, ’zero’, ’uidx’, ...

uidx([maps.x0_idx; maps.x1_idx; maps.T0_idx; maps.T_idx]));
>> prob3 = coco_add_pars(prob3, ’vel’, uidx(maps.x0_idx(2)), ’v’);
>> prob3 = adjt_coll2coll(prob3, ’’, ’linode2’, lab(2));
>> chart = coco_read_adjoint(’po’, ’linode2’, lab(2), ’chart’);
>> [data, axidx] = coco_get_adjt_data(prob3, ’coll’, ’data’, ’axidx’);
>> opt = data.coll_opt;
>> prob3 = coco_add_adjt(prob3, ’po’, ’aidx’, ...

axidx([opt.x0_idx; opt.x1_idx; opt.T0_idx; opt.T_idx]), ’l0’, chart.x);
>> chart = coco_read_adjoint(’vel’, ’linode2’, lab(2), ’chart’);

33

>> prob3 = coco_add_adjt(prob3, ’vel’, ’d.v’, ’aidx’, ...
axidx(opt.x0_idx(2)), ’l0’, chart.x);

>> prob3 = coco_add_event(prob3, ’OPT’, ’d.th’, 0);
>> coco(prob3, ’linode3’, [], 1, {’d.th’ ’v’ ’k’ ’th’}, {[], [.9 2]});

Here, every special point with ’d.th’ equal to 0 that is detected during continuation is
assigned the ’OPT’ label.

Exercises

1. Consider an autonomous encoding of the vector field in this section, by augmenting
the state x with the phase of the excitation, and perform the appropriate theoretical
and computational analysis.

2. Repeat the analysis in the previous exercise using a ’bvp’-compatible encoding of the
boundary conditions.

3. Use two coupled ’bvp’ instances to represent two periodic solutions of the harmonically
excited linear oscillator

ẋ1 = x2, ẋ2 = −x1 − x2 + cosx3, ẋ3 = ω

with values of ω that differ by some small but positive number ε. Use the adjoint
necessary conditions to locate local extrema in the difference between their maximal
values of x1 under variations in ω and branch switch to drive the continuation parameter
corresponding to the associated Lagrange multiplier to 1.

4. Consider the Lagrangian

L (x(t), ζ, ω, α,A, µa, `ode(t), `bc, ηζ , ηω, ηα, ηa) =

µA +

∫ 2π/ω

0

`ode(t)
>(ẋ(t)− f(x(t), ζ, ω, α,A)

)
dt+ `>bcfbc(x(2π/ω), x(0))

+ ηζ (ζ − µζ) + ηω (ω − µω) + ηα (α− µα) + ηa (A− µA) ,

where

f(x, ζ, ω, α,A) =

 x2
−2ζx2 − x1 − αx31 − A cosx3

ω

 ,

fbc(x, y) =

 x1 − y1
x2 − y2

x3 − y3 − 2π

 ,

and µζ , µα, and µω are fixed. Show that µA = 2αηα at a local extremum of L.
Verify this result with coco using two stages of continuation of a suitably constructed
extended continuation problem.

34

9 Toolbox reference
The toolbox constructors implement zero and monitor functions appropriate to the nature
of the continuation problem and the detection of special points along the solution mani-
fold. Event handlers ensure that solution data specifically associated with special points is
appropriately stored to disk.

9.1 Zero problems

For continuation of general trajectory segments, the zero problem is given in terms of the
vector of continuation variables u = (υbp, T0, T, p) by Φ(u) = 0, where the column matrix υbp
contains the unknown values of the state variables on the mesh of base points and

Φ : u 7→
(

T
2N

vec (κF ∗ F (T0 + Ttcn, vecn (W · υbp) , 11,Nm ⊗ p))−W ′ · υbp
Q · υbp

)
(71)

is the corresponding family of zero functions. Here, tcn denotes a set of collocation nodes on
the interval [0, 1]. For an autonomous vector field, the continuation variable T0 is associated
with an inactive continuation parameter ’OID.coll.T0’, where OID denotes an object in-
stance identifier (the period is omitted when OID equals the empty string). The dimensional
deficit then equals n + q + 1, where n is the number of state variables and q is the number
of problem parameters. For a non-autonomous vector field, the dimensional deficit equals
n+ q + 2.

The discretization associated with the zero problem is represented by the two-dimensional
array κF and the matrices W , W ′, and Q. Adaptive remeshing of the discretization involves
changes to κF as well as, in the case of changes to the number of discretization intervals, to
the matrices W , W ′, and Q.

In the current implementation of the ’coll’ toolbox, the zero problem for simultaneous
continuation of trajectory segments and solutions to the corresponding variational equation
is given by appending the one-dimensional array vec (∆bp) to the continuation variables and
the one-dimensional array

vec

(
T
2N

diag
(
κ∂xF ∗ ∂xF (T0 + Ttcn, vecn (W · υbp) , 11,Nm ⊗ p)

)
·W ·∆bp −W ′ ·∆bp

Q ·∆bp

)
(72)

to the corresponding family of zero functions. Each column of ∆bp contains the unknown
values of a solution to the variational equation on the mesh of base points. For an autonomous
vector field, the total dimensional deficit now equals n(m+1)+q+1, where m is the number
of simultaneous copies of the variational equation, i.e., the number of columns of ∆bp. For a
non-autonomous vector field, the total dimensional deficit equal n(m+ 1) + q + 2.

In addition to κF , W , W ′, and Q, the discretization of the problem of simultaneous
continuation of a trajectory segment and solutions to the corresponding variational problem
is represented by the three-dimensional array κ∂xF . Adaptive remeshing of the discretization
involves changes to κ∂xF that are consistent with changes made to κF .

35

In the current implementation of the ’coll’ toolbox, the zero problem for multi-segment
boundary-value problems includes multiple instances of the appropriate zero problem for a
trajectory segment, as well as the imposition of boundary conditions that depend on the
collection of interval lengths and trajectory end points, as well as the problem parameters.
Specifically, if T0, T , υbp,0, υbp,1, and p denote arrays of the corresponding elements of the
collection of continuation variables, then the additional zero functions are of the form

(T0, T, υbp,0, υbp,1, p) 7→ fbc (T0, T, υbp,0, υbp,1, p) (73)

for a non-autonomous problem, and

(T, υbp,0, υbp,1, p) 7→ fbc (T, υbp,0, υbp,1, p) (74)

for an autonomous problem, in terms of some function fbc.

9.2 Calling syntax

The calling syntax for toolbox constructors is of the form

prob = tbx_ctr(prob, oid, varargin)

where prob denotes a (possibly empty) continuation problem structure and oid is a string
representing an object instance identifier.

In the case of the ode_isol2coll toolbox constructor, the varargin input argument
adheres to the following syntax:

fcns t0 x0 [pnames] p0 [opts]

where

fcns = @f [@dfdx [@dfdp [@dfdxdx [@dfdxdp [@dfdpdp]]]]]

in the case of an autonomous vector field and

fcns = @f [@dfdx [@dfdp [@dfdt [@dfdxdx [@dfdxdp [@dfdpdp
[@dfdtdx [@dfdtdp [@dfdtdt]]]]]]]]]

for an non-autonomous vector field. Here, @f denotes a required function handle to the en-
coding of the operator F , and each of the optional arguments @dfdx, @dfdp, @dfdt, @dfdxdx,
@dfdxdp, @dfdpdp, @dfdtdx, @dfdtdp, and @dfdtdt is either an empty array ([]) or a function
handle to the corresponding array of partial derivatives with respect to the state variables,
the problem parameters, or time, respectively. Notably, if adjoint equations are to be con-
structed using the adjt_isol2coll constructor, then the preceding call to ode_isol2coll

must include explicit function handles to encodings of the Jacobians with respect to x, p,
and (as appropriate) t, respectively.

An initial solution guess for the time mesh, the state variables, and the problem param-
eters is given by the t0, x0, and p0 input arguments, respectively. An optional designation
of string labels for continuation parameters assigned to track the problem parameters is

36

provided with pnames, which is either a single string or a cell array of strings. An error is
thrown if the number of string labels in this optional argument, when present, differs from
the number of elements of p0.

In the case of the ode_isol2bvp constructor, the varargin input argument adheres to
the syntax

(coll | {{coll} ...}) [pnames] @bc [@dbcdx] [bc_data [@bc_update]] [opts]

where coll indicates an argument that matches the varargin input syntax for ode_isol2coll
for a single trajectory segment, but omits the pnames argument, as the latter must be com-
mon to all the segments. An error is thrown if string labels are included, or if the number
of problem parameters are not the same for all segments. An optional designation of string
labels for continuation parameters assigned to track the problem parameters is provided with
pnames, which is either a single string or a cell array of strings. An error is thrown if the
number of string labels in this optional argument, when present, differs from the number
of elements of p0. The @bc, @dbcdx, and @bc_update input arguments denote required and
optional function handles to encodings of the boundary condition function fbc, its Jacobian
with respect to the input arguments (in the non-autonomous case, T0), T , υbp,0, υbp,1, and p,
and the function used to update the data input argument of these encodings, respectively.
Initial content for data is assigned in the bc_data input argument.

For each of the ode_coll2coll, ode_BP2coll, ode_bvp2bvp, and ode_BP2bvp toolbox
constructors, the varargin input argument adheres to the syntax

run [soid] lab [opts]

In all cases, run denotes a string identifying a previous run and lab is a numeral identifying
the corresponding solution file. The optional argument soid denotes a source object instance
identifier, in the case that this differs from oid.

For the ode_isol2coll, ode_coll2coll, and ode_BP2coll constructors, the optional
opts argument may equal either of the strings ’-coll-end’ or ’-end-coll’. Similarly,
for the ode_isol2bvp, ode_bvp2bvp, and ode_BP2bvp constructors, the optional opts ar-
gument may equal either of the strings ’-bvp-end’ or ’-end-bvp’. In either case, this
denotes explicitly the end of the sequence of arguments to a ’coll’ toolbox constructor.
For ode_coll2coll and ode_bvp2bvp, opts may also contain the string ’-switch’, which,
when present, implies that continuation should proceed along a secondary solution branch
through the given solution. For the ode_isol2coll, ode_coll2coll, and ode_BP2coll con-
structors, opts may also contain the string ’-var’ followed by a numerical matrix, indicating
the simultaneous continuation of solutions to the corresponding variational problem. In this
case, each column of the matrix corresponds to a perturbation to the initial point on the tra-
jectory segment. Similarly, in the case of ode_bvp2bvp, opts may contain the string ’-var’

followed by a cell array of numerical matrices, again indicating the simultaneous continu-
ation of solutions to each of the corresponding variational problems. Each element of the
cell array represents a collection of perturbations to the initial point on the corresponding
trajectory segment.

37

9.3 Adjoint functions

For continuation of general trajectory segments, the contributions to the adjoint equa-
tions associated with variations in υbp, T0, T , and p are expressed in terms of the Jaco-
bians ∂tF (t, x, p), ∂xF (t, x, p), and ∂pF (t, x, p) and a subset of components of the vector
of continuation multipliers λ. The appropriate changes to the continuation problem struc-
ture are invoked using the adjt_isol2coll constructor, following a preceding call to the
ode_isol2coll constructor that includes function handles to explicit encodings of these
Jacobians. Specifically, in the call

prob = adjt_isol2coll(prob, oid)

the oid argument denotes an object identifier associated with the toolbox instance created
by the preceding call to ode_isol2coll. The corresponding components of λ are initialized
to 0.

If the preceding call to ode_isol2coll includes an explicit list of parameter labels, then
the corresponding additions to the adjoint equations are automatically encoded by the call
to adjt_isol2coll. The corresponding components of the vector of continuation multipliers
η are initialized to 0.

In a similar fashion, a call to ode_coll2coll or ode_BP2coll may be followed by a call to
adjt_coll2coll or adjt_BP2coll, respectively, with identical arguments, in order to append
the contributions to the adjoint equations associated with the reconstructed continuation
problem. In either case, the associated elements of the vectors of continuation multipliers λ
and η are automatically initialized from the corresponding values stored in a solution file.

For continuation of families of constrained trajectory segments, the contributions to the
adjoint equations associated with variations in υbp, T0, T , and p are expressed in terms of
the Jacobians ∂tF (t, x, p), ∂xF (t, x, p), ∂pF (t, x, p), and ∂fbc, and a subset of components
of the vector of continuation multipliers λ. The appropriate changes to the continuation
problem structure are invoked using the adjt_isol2bvp constructor, following a preceding
call to the ode_isol2bvp constructor that includes function handles to explicit encodings of
these Jacobians. Specifically, in the call

prob = adjt_isol2bvp(prob, oid)

the oid argument denotes an object identifier associated with the toolbox instance created
by the preceding call to ode_isol2bvp. The corresponding components of λ are initialized
to 0.

If the preceding call to ode_isol2bvp includes an explicit list of parameter labels, then
the corresponding additions to the adjoint equations are automatically encoded by the call
to adjt_isol2bvp. The corresponding components of the vector of continuation multipliers
η are initialized to 0.

In a similar fashion, a call to ode_bvp2bvp or ode_BP2bvp may be followed by a call to
adjt_bvp2bvp or adjt_BP2bvp, respectively, with identical arguments, in order to append
the contributions to the adjoint equations associated with the reconstructed continuation
problem. In either case, the associated elements of the vectors of continuation multipliers λ

38

and η are automatically initialized from the corresponding values stored in a solution file.

9.4 Continuation parameters

The inclusion of the pnames optional argument in the call to the ode_isol2coll toolbox
constructor ensures that the continuation problem structure encodes embedded continuation
parameters that are equal in number to the number of string labels (which must equal the
number of problem parameters). These string labels are stored in the function data structure,
written to disk with each solution file, and reused in the event that a continuation problem
is created from saved solution data using either ode_coll2coll or ode_BP2coll. The same
holds for a call to the ode_isol2bvp constructor and when restarting continuation using
either ode_bvp2bvp or ode_BP2bvp. A subsequent call to adjt_isol2coll, adjt_coll2coll,
adjt_BP2coll, adjt_isol2bvp, adjt_bvp2bvp, or adjt_BP2bvp ensures the encoding in the
continuation problem structure of an accompanying set of initially inactive embedded con-
tinuation parameters, which correspond to an associated subset of the vector of continuation
multipliers η (initialized to 0), and with labels obtained by appending ’d.’ to the original
string labels.

All the ’coll’ toolbox constructors encode two nonembedded continuation parameters
’OID.coll.err’ and ’OID.coll.err_TF’ for each trajectory segment and corresponding
object instance identifier OID. These are associated with an estimate of the discretization
error and the ratio between this error and an error tolerance. The detection of a special
point denoted by ’MXCL’ is triggered when the second of these exceeds 1.

For an autonomous vector field, an embedded continuation parameter ’d.OID.coll.T0’
is encoded in the continuation problem structure and designated as active. This parameter
corresponds to an element of the vector of continuation multipliers η that is initialized to 0.

When the optional setting ’var’ is set to true, the ode_isol2coll and ode_coll2coll

constructors encode a nonembedded monitor function whose output is empty and, therefore,
not associated with a continuation parameter. This monitor function stores a temporary
copy of a nonsingular matrix solution to the variational equation for use by other monitor
functions, for example to compute Floquet multipliers for a periodic orbit. For a multi-
segment boundary-value problem, each trajectory segment is associated with a separate
instance of the ’var’ toolbox setting. The coco_set core utility can be used to set these
individually or collectively, as described in Recipes for Continuation.

9.5 Toolbox settings

Optional settings associated with the ’coll’ toolbox may be assigned non-default values us-
ing the coco_set utility. These include the initial number of discretization intervals (’NTST’
with default value 10) and the degree of the interpolating polynomials (’NCOL’ with default
value 4). While it is also possible to assign a non-default value to the tolerance used to trig-
ger the ’MXCL’ special point, it is best to do so only by changing the global coco tolerance.
This will ensure that the error tolerance used for ’coll’ is consistent with the value used
by the nonlinear solver.

39

In the absence of adaptive remeshing, the number of discretization intervals remain un-
changed during continuation. With an atlas algorithm that supports mesh adaptation, the
frequency of adaptation is associated with the optional toolbox setting ’NAdapt’ of the
’cont’ toolbox. The default value for this setting is 0, corresponding to no adaptation. Ad-
vanced settings of the ’coll’ toolbox may be used to control the interval of allowable integer
values for the number of discretization intervals in the presence of adaptive remeshing.

To set options associated with a specific ’coll’ instance with object instance identifier
OID, use the syntax

prob = coco_set(prob, ’OID.coll’, ...

To set options associated with all ’coll’ instances whose object instance identifiers derive
from a parent identifier PID, use the syntax

prob = coco_set(prob, ’PID.coll’, ...

To set options for all ’coll’ instances in a continuation problem, use the syntax

prob = coco_set(prob, ’coll’, ...

As explained in Recipes for Continuation, precedence is given to settings defined using the
most specific path identifier. See the output of the coll_settings utility for a list of sup-
ported settings and their default or current values.

9.6 Toolbox output

By definition, the bifurcation data cell array stored during continuation and returned by
the coco entry-point function (given a receiving variable) includes columns with head-
ers ’||OID.x||_{L_2[0,T]}’, ’||OID.x||_{L_2[0,1]}’, and ’OID.NTST’ with data given
by a quadrature-approximation of the L2 norm of the trajectory segment on the interval
[T0, T0 +T], the L2 norm of a time-rescaled version of the trajectory segment on the interval
[0, 1], and the number of mesh interval, respectively, and with OID representing an object
instance identifier (the period is omitted when OID equals the empty string). All continu-
ation parameters are included in the bifurcation data cell array by default, but printed to
screen during continuation only if included in the list of arguments to the coco entry-point
function.

For general trajectory segments, the sol output argument of the coll_read_solution

utility contains

• the time instances corresponding to the mesh of base points (in the tbp field),

• the values of the state variables on the mesh of base points (in the xbp field),

• the interval length (in the T field),

• the vector of problem parameters (in the p field),

• the vector of continuation variables (in the u field),

40

• the tangent vector to the corresponding curve segment (in the t field).

For branch points (located by the atlas algorithm) the t0 field contains a singular vector
normal to t. In the case of simultaneous continuation of solutions to the variational problem,
the field var.v contains the array of perturbations to the initial point on the trajectory
segment.

For constrained families of trajectory segments, the sol output argument of the toolbox
solution extractor bvp_read_solution contains a struct array, the i-th element of which
includes

• the time instances corresponding to the mesh of base points on the i-th segment (in
the tbp field),

• the values of the state variables on the mesh of base points on the i-th segment (in the
xbp field),

• the interval length for the i-th segment (in the T field),

• the vector of problem parameters (in the p field).

The coll_plot_theme and bvp_plot_theme toolbox utilities define the default visualiza-
tion theme for the ’coll’ toolbox. The command

>> thm = coll_plot_theme(’seg’)

assigns the default theme for visualization of the results of continuation of general trajectory
segments to the thm variable. Similarly, the command

>> thm = bvp_plot_theme(’segs’)

assigns the default theme for visualization of the results of continuation of constrained fam-
ilies of trajectory segments to the thm variable.

9.7 Developer’s interface

Continuation problems constructed with the ’coll’ toolbox constructors may be embedded
in larger continuation problems that contain additional continuation variables, zero func-
tions, and/or monitor functions. Each ’coll’ instance is associated with a toolbox instance
identifier obtained by prepending an object instance identifier to the string ’coll’. Similarly,
each ’bvp’ instance is associated with a toolbox instance identifier obtained by prepending
an object instance identifier to the string ’bvp’. The object instance identifier of the 1st
(2nd, 3rd, ...) instance of ’coll’ embedded in an instance of ’bvp’ is obtained by appending
’seg1’ (’seg2’, ’seg3’, ...) to the ’bvp’ toolbox instance identifier.

The coco_get_func_data core utility may be used to extract

• the toolbox data structure associated with a trajectory segment continuation prob-
lem (the ’data’ option with function identifier ’OID.coll’) or with a constrained
boundary-value problem (the ’data’ option with function identifier ’OID.bvp’);

41

• the function dependency index set associated with the basic trajectory segment zero
problem (the ’uidx’ option with function identifier ’OID.coll’), with the variational
zero problem (the ’uidx’ option with function identifier ’OID.coll.var’), or with
the boundary conditions zero problem of a constrained boundary-value problem (the
’uidx’ option with function identifier ’OID.bvp’).

For each trajectory segment zero problem, the toolbox data structure contains several fields
associated with the ’ode’ toolbox family. These include function handles to the correspond-
ing vector field (fhan), to its Jacobians (dfdxhan, dfdphan, and dfdthan), and to functions
evaluating the second derivatives with respect to the state variables, problem parameters,
and time (dfdxdxhan, dfdxdphan, dfdpdphan, dfdtdxhan, dfdtdphan, and dfdtdthan), a cell
array of string labels for the continuation parameters associated with problem parameters
(pnames), the state-space dimension (xdim), and the number of problem parameters (pdim).

As shown in the examples and described further in the documentation of the coll_add

interface function, the content of the coll_seg field of the toolbox data structure asso-
ciated with each trajectory segment continuation problem includes context-independent ar-
rays of integer indices that reference the discretization of the state variables (maps.xbp_idx),
the initial time (maps.T0_idx), the interval length (maps.T_idx), the problem parameters
(maps.p_idx), the initial point on the trajectory segment (maps.x0_idx), and the final point
on the trajectory segment (maps.x1_idx), respectively. In the case that the ’var’ toolbox
option is set to true, the content of the coll_tst.M field of the toolbox data structure
includes a nonsingular solution to the variational equation obtained from a nonembedded
monitor function.

The coco_get_adjt_data core utility may be used to extract the adjoint row (the ’afidx’
option) and column (the ’axidx’ option) index sets as well as the toolbox adjoint data
structure (the ’data’ option). The content of the coll_opt field of the adjoint data struc-
ture associated with a trajectory segment includes context-independent arrays of integer
indices for the columns associated with collocation nodes (xcn_idx), initial (x0_idx) and
final (x1_idx) end points, initial time (T0_idx) and interval length (T_idx), and problem
parameters (p_idx), respectively.

For a trajectory segment continuation problem that contains the variational zero problem,
the content of the coll_var field of the toolbox data structure includes context-independent
arrays of integer indices that reference the part of the solution to the variational problem
corresponding to the initial point on the trajectory segment (v0_idx) and the final point on
the trajectory segment (v1_idx), respectively.

The toolbox data structure associated with a constrained boundary value problems in-
cludes fields specifying the number of trajectory segments (nsegs) and a cell array of toolbox
instance identifiers for each of the trajectory segment zero problems (cids).

The toolbox data structure associated with the basic trajectory segment continuation
problem or with a constrained boundary-value problem contains a number of implementation-
dependent internal fields, whose use may change in the future. Accessing such internal fields
is deprecated.

42

