
The Equilibrium Point Toolbox

Harry Dankowicz
Department of Mechanical Science and Engineering

University of Illinois at Urbana-Champaign

Frank Schilder
Department of Mathematics

Technical University of Denmark

November 14, 2017

Contents
1 Introduction 2

2 The cusp normal form – cusp 3

3 Bratu’s problem – bratu 6

4 A Brusselator model – brus 8

5 The Laplace Operator – pdeeig 12

6 Chemical oscillations – chemosc 15

7 Isola curves – isola 20

8 Optimization – cusp_optim 24

9 Toolbox reference 28

1

1 Introduction
The ’ep’ toolbox is a basic toolbox for continuation and bifurcation analysis of families of
equilibria of evolution equations of the form

ẋ = F (x, p) (1)

in terms of a vector of problem variables x ∈ Rn, a vector of problem parameters p ∈ Rq,
and a nonlinear operator F : Rn×Rq → Rn. For infinite-dimensional problems, the toolbox
applies to suitable discretizations of x and F . The ’ep’ toolbox belongs to the ’ode’ toolbox
family, and is modeled on the ’alg’ toolbox, described in Recipes for Continuation1. The
’ep’ toolbox supports detection of

• saddle-node bifurcations,

• Hopf bifurcations,

• neutral saddle points (optional and disabled by default), and

• branch and fold points (inherited from the associated atlas class),

as well as continuation along families of saddle-node and Hopf bifurcations. For continuation
of equilibria, the ’ep’ toolbox supports the construction of the associated adjoint equations2.

The toolbox user interface is defined by the ep_read_solution utility, which reads solu-
tion and toolbox data from disk, and by the toolbox constructors

• ode_isol2ep for continuation along a family of equilibria from an initial solution guess;

• ode_ep2ep for continuation along a family of equilibria from a saved solution point;

• ode_BP2ep for continuation along a family of equilibria from a branch point along a
secondary branch;

• ode_HB2HB for continuation along a family of Hopf bifurcation points from a saved Hopf
bifurcation point;

• ode_SN2SN for continuation along a family of saddle-node bifurcation points from a
saved saddle-node bifurcation point.

The additional constructors adjt_isol2ep, adjt_ep2ep, and adjt_BP2ep contribute terms to
the adjoint equations associated with the zero and monitor functions appended to a contin-
uation problem by the ode_isol2ep, ode_ep2ep, and ode_BP2ep constructors, respectively.

1Dankowicz, H. & Schilder, F., Recipes for Continuation, Society for Industrial and Applied Mathematics,
2013.

2Li, M. & Dankowicz, H., Staged Construction of Adjoints for Constrained Optimization of Integro-
Differential Boundary-Value Problems, in review, 2017.

2

Usage is illustrated in the following several examples. Each example corresponds to fully
documented code in the coco/ep/examples folder in the coco release. Slight differences
between the code included below and the example implementations in coco/ep/examples

show acceptable variations in the coco syntax and demonstrate alternative solutions to
construction and analysis. To gain further insight, please run the code to generate and
explore figures and screen output.

Detailed information about coco utilities deployed in these examples may be found in
the document “Short Developer’s Reference for coco,” available in the coco/help folder in
the coco release, and in Recipes for Continuation.

2 The cusp normal form – cusp

Consider the ordinary differential equation

ẋ = κ− x
(
λ− x2

)
(2)

in terms of the scalar problem variable x ∈ R and vector of problem parameters p = (κ, λ) ∈
R2. In this case, equilibrium solutions correspond to roots of the vector field

F (x, p) = κ− x
(
λ− x2

)
. (3)

We proceed to encode the vector field and its Jacobians with respect to the problem variables
and parameters in the anonymous functions cusp, cusp_dx, and cusp_dp, as shown in the
following commands:

>> cusp = @(x,p) p(1)-x*(p(2)-x^2);
>> cusp_dx = @(x,p) 3*x^2-p(2);
>> cusp_dp = @(x,p) [1 -x];

We compute a family of equilibria under variations in κ by invoking the coco entry-point
function as shown in the sequence of commands below:

>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’vectorized’, false);
>> ode_fcns = {cusp, cusp_dx, cusp_dp};
>> prob = ode_isol2ep(prob, ’’, ode_fcns{:}, 0, {’ka’ ’la’}, [0; 0.5]);
>> coco(prob, ’cusp1’, [], 1, {’ka’ ’la’}, [-0.5 0.5]);

Here, the coco_prob core utility assigns an empty continuation problem structure to prob.
The coco_set core utility assigns the non-default value of false to the ’vectorized’ setting
of the ’ode’ toolbox family, in order to indicate the non-vectorized encoding of the vector
field and its Jacobians. The content of prob is then modified by the ode_isol2ep toolbox
constructor. This stores a representation of the continuation problem with initial solution
guess (x, κ, λ) = (0, 0, 0.5), including the definition of two inactive continuation parameters,
denoted by ’ka’ and ’la’, that track/constrain the values of κ and λ, respectively.

The call to the coco entry-point function identifies the run by the string identifier
’cusp1’, recognizes by the empty bracket the encoding of the corresponding extended con-
tinuation problem and the initial assignment of inactive continuation parameters in prob,

3

and identifies the desired dimension of the solution manifold by the integer 1. As the di-
mensional deficit3 of the restricted continuation problem encoded by the call to ode_isol2ep

equals 0, it is necessary to release4 one of the inactive continuation parameters, in order to
obtain a restricted continuation problem with dimensional deficit of 1. The subsequent refer-
ence to ’ka’ and ’la’, in that order, implies that the continuation parameter ’ka’ is active
and varying throughout the run, while ’la’ remains inactive and constant. Values of both
parameters are printed to screen during continuation. The final argument defines bounds
on the computational domain, restricting continuation to the range −0.5 ≤ κ ≤ 0.5. We
visualize the result of continuation using the core bifurcation data visualizer coco_plot_bd
as shown here:

>> figure(1); clf
>> thm = struct(’special’, {{’SN’}});
>> coco_plot_bd(thm, ’cusp1’, ’ka’, ’x’)
>> grid on

This produces a graph of values of x versus ’ka’ with default formating of branches of stable
and unstable equilbria, respectively. The information in the thm theme structure overrides
defaults encoded in the toolbox utility ep_plot_theme in order to include a marker at the
saddle-node bifurcation along the solution manifold.

The two saddle-node bifurcations detected and located during continuation may serve
as starting points for continuation along families of saddle-node bifurcation points. To this
end, we use the coco_bd_read core utility to extract information from the bifurcation data
file stored during continuation, as shown below. The subsequent call to the coco_bd_labs

utility returns an array of integers associated with the solution files corresponding to the
saddle-node bifurcation points.

>> bd = coco_bd_read(’cusp1’);
>> labs = coco_bd_labs(bd, ’SN’);

We use the solution chart structure and data array stored in the first of these solution files
to construct a corresponding continuation problem structure.

>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’vectorized’, false);
>> prob = ode_SN2SN(prob, ’’, ’cusp1’, labs(1));
>> coco(prob, ’cusp2’, [], 1, {’ka’ ’la’}, [-0.5 0.5]);

In this case, the dimensional deficit of the restricted continuation problem encoded by the
3Dimensional deficit: difference between the number of continuation variables and active continuation

parameters (here equal to the number of problem variables plus the number of problem parameters, i.e.,
1+ 2 = 3), and the number of imposed equations (here equal to the zero problem and the assignment of the
values of the problem parameters to the two inactive continuation parameters, i.e., 1 + 2 = 3).

4To release: to include in the list of continuation parameters passed to coco in the next-to-last argument.
Inactive continuation parameters are activated (i.e., allowed to vary during continuation), to the extent
required by the manifold dimension, in the order listed. Surplus inactive continuation parameters remain
inactive.

4

ode_SN2SN constructor5 equals −1. A one-dimensional solution manifold results by releasing
two inactive continuation parameters. It follows that, in this run, both ’ka’ and ’la’ are
active and varying. The following call to coco_plot_bd visualizes the result of continuation.

>> figure(2); clf
>> coco_plot_bd(’cusp2’)
>> grid on

In this case, the defaults encoded in ep_plot_theme ensure that, by omission of additional
arguments to coco_plot_bd, the horizontal axis represents the first output parameter ’ka’,
and the vertical axis represents second output parameter ’la’.

Exercises

1. Verify that the sequence of commands

>> ode_fcns = {cusp, cusp_dx, cusp_dp};
>> prob = ode_isol2ep(prob, ’’, ode_fcns{:}, 0, {’ka’ ’la’}, [0; 0.5]);
>> coco(prob, ’cusp1’, [], 1, {’ka’ ’la’}, [-0.5 0.5]);

may be replaced by either of the following single calls to the coco entry-point function:

>> coco(prob, ’cusp1’, @ode_isol2ep, cusp, cusp_dx, cusp_dp, 0, ...
{’ka’ ’la’}, [0; 0.5], 1, {’ka’ ’la’}, [-0.5 0.5]);

>> coco(prob, ’cusp1’, ’ode’, ’isol’, ’ep’, cusp, cusp_dx, cusp_dp, 0, ...
{’ka’ ’la’}, [0; 0.5], 1, {’ka’ ’la’}, [-0.5 0.5]);

In the second of these alternative calling syntaxes, the string ’ode’ identifies the tool-
box family, the string ’isol’ identifies the starting point of continuation as one ob-
tained from an initial solution guess, and the string ’ep’ identifies the type of solutions
computed by continuation.

2. Verify that the call to the coco_bd_read core utility may be omitted by assigning the
output of the coco entry-point function directly to the corresponding variable.

3. Verify that the inclusion of function handles to the Jacobians with respect to the
problem variables and problem parameters is optional.

4. Use ode_SN2SN to perform continuation over the computational domain −1 ≤ κ ≤ −0.5
along a family of saddle-node bifurcations starting from the second solution stored to
disk in the ’cusp2’ run, and visualize the result using the coco_plot_bd bifurcation
data visualizer.

5The condition for saddle-node bifurcations implemented in the current version of the ’ep’ toolbox adds
2n additional continuation variables and imposes 2n+1 additional equations. Hence, the dimensional deficit
is reduced by 1 relative to that of the equilibrium point restricted continuation problem.

5

3 Bratu’s problem – bratu

Consider the scalar boundary-value problem

ut = uξξ + λu+ µeu, u(0, t) = u(1, t) = 0 (4)

on the two-dimensional domain (t, ξ) ∈ R×[0, 1], in terms of the vector of problem parameters
p = (µ, λ) ∈ R2. We arrive at a finite-dimensional, ordinary differential equation of the form

ẋ = F (x, p) (5)

by discretizing the unknown function u(ξ, t) in terms of its nodal values ui(t) at ξ = ξi := i/N ,
for i = 1, . . . , N − 1, and the one-dimensional spatial Laplace operator by a mid-point finite
difference formula

uξξ(ξi, t) 7→ N2
(
ui−1(t)− 2ui(t) + ui+1(t)

)
, (6)

where u0(t) = uN(t) ≡ 0. Specifically,

ẋ = N2

−2 1

1 −2 1
.

1 −2 1
1 −2

 · x+ λx+ µ

 eu1
...

euN−1

 (7)

in terms of the vector of problem variables

x =

 u1
...

uN−1

 . (8)

We proceed to encode the vector field on the right-hand side of (7) and its Jacobians with re-
spect to the problem variables and parameters in the anonymous functions bratu, bratu_dx,
and bratu_dp, as shown in the following commands:

>> N = 20;
>> D = diag(-2*ones(N-1,1)) + diag(ones(N-2,1),-1) + diag(ones(N-2,1),1);
>> D = N^2*D;
>> bratu = @(u,p) D*u + p(2)*u + p(1)*exp(u);
>> bratu_dx = @(u,p) D + p(2)*eye(N-1,N-1) + p(1)*diag(exp(u));
>> bratu_dp = @(u,p) [exp(u) u];

We compute a family of equilibria under variations in µ by invoking the coco entry-point
function as shown in the sequence of commands below:

>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’vectorized’, false);
>> prob = coco_set(prob, ’cont’, ’PtMX’, 50);
>> ode_fcns = {bratu, bratu_dx, bratu_dp};
>> ode_args = {ode_fcns{:}, zeros(N-1,1), {’mu’ ’la’}, [0; 0]};
>> cont_args = {1, {’mu’ ’ep.test.SN’}, [0 4]};
>> bd1 = coco(prob, ’bratu1’, @ode_isol2ep, ode_args{:}, cont_args{:});

6

Here, the coco_prob core utility assigns an empty continuation problem structure to prob.
The coco_set core utility assigns the value of false to the ’vectorized’ setting of the
’ode’ toolbox family, in order to indicate the non-vectorized encoding of the vector field
and its Jacobians. We encode the value of 50 for the ’PtMX’ setting of the ’cont’ tool-
box, imposing an upper bound of 50 continuation steps in each direction along the solution
manifold. The call to the coco entry-point function identifies the run by the string iden-
tifier ’bratu1’, and uses the ode_isol2ep toolbox constructor to temporarily modify the
content of prob to include a representation of the continuation problem with initial solution
guess (u1, . . . , uN−1, µ, λ) = (0, . . . , 0, 0, 0), as well as two inactive continuation parameters,
denoted by ’mu’ and ’la’, that track/constrain the values of µ and λ, respectively.

In the cont_args variable, the integer 1 identifies the desired dimension of the solution
manifold. As the dimensional deficit of the restricted continuation problem encoded by the
call to ode_isol2ep equals 0, it is necessary to release one of the inactive continuation pa-
rameters, in order to obtain a restricted continuation problem with dimensional deficit of 1.
The subsequent reference to ’mu’ and ’ep.test.SN’ implies that the continuation parameter
’mu’ is active and varying throughout the run. The inclusion of the ’ep.test.SN’ nonem-
bedded continuation parameter ensures that the value of the saddle-node monitor function is
printed to screen (it is included with the bifurcation data stored during continuation by de-
fault). Finally, the argument [0 4] defines bounds on the computational domain, restricting
continuation to the range 0 ≤ µ ≤ 4.

We may restart continuation from the final point on the solution manifold found in the
previous run using the ode_ep2ep toolbox constructor, as shown in the following sequence
of commands.

>> labs = coco_bd_labs(bd1, ’EP’);
>> ode_args = {’bratu1’, labs(end)};
>> cont_args = {1, {’mu’ ’ep.test.SN’}, [0 4]};
>> bd2 = coco(prob, ’bratu2’, @ode_ep2ep, ode_args{:}, cont_args{:});

We visualize the result of continuation by using the coco_plot_bd bifurcation data visualizer,
as shown below.

>> figure(1); clf
>> thm = struct(’special’, {{’SN’}});
>> coco_plot_bd(thm, ’bratu2’)
>> grid on

The defaults encoded in ep_plot_theme ensure that, by omission of additional arguments to
coco_plot_bd, the horizontal axis represents the first output parameter, i.e., ’mu’, and the
vertical axis represents the Euclidean norm

√
u21 + · · ·+ u2N−1.

The saddle-node bifurcation detected and located during continuation may serve as a
starting point for continuation along a family of saddle-node bifurcation points, as shown
below.

>> labs = coco_bd_labs(bd1, ’SN’);
>> prob = coco_set(prob, ’cont’, ’PtMX’, 100);
>> ode_args = {’bratu1’, labs(1)};

7

>> cont_args = {1, {’mu’ ’la’}, {[-4 4] [-2 20]}};
>> bd3 = coco(prob, ’bratu3’, @ode_SN2SN, ode_args{:}, cont_args{:});

In this case, the restricted continuation problem encoded by the call to the ode_SN2SN

constructor has dimensional deficit equal to −1. A one-dimensional solution manifold results
by releasing two inactive continuation parameters. It follows that, in this run, both ’mu’

and ’la’ are active and varying. Notably, the branch point detected at µ ≈ 0 corresponds
to the intersection with a branch of approximate eigenfunctions of the Laplace operator with
the given boundary conditions corresponding to the approximate eigenvalue λ ≈ 9.8493.

The following commands generate three-dimensional representations of the original branch
of equilibrium solutions and the saddle-node bifurcation curve.

>> figure(2); clf; hold on
>> coco_plot_bd(’bratu1’, ’la’, ’mu’, ’||x||_2’)
>> thm = struct(’special’, {{’BP’}});
>> coco_plot_bd(thm, ’bratu3’, ’la’, ’mu’, ’||x||_2’)
>> hold off; grid on; view(3)

Exercises

1. Use the ode_ep2ep constructor to restart continuation along branches of equilibria
from each of the solution points on the saddle-node bifurcation curve stored in the last
run, and overlay this family of solution curves on the visualization of the backbone
saddle-node curve.

2. Experiment with different values of N and explore spurious results for small values of
N , as well as convergence properties as N →∞. How does the value of λ at the branch
point with µ ≈ 0 depend on N? At what rate does it converge to the theoretical value
of π2, if at all?

3. Use the ode_BP2ep constructor to restart continuation from the branch point found
in the last run along the secondary branch of equilibrium solutions, corresponding
to approximate eigenfunctions of the Laplace operator with zero Dirichlet boundary
conditions.

4. What effect does the following change of the order of continuation parameters have on
the computation of bd1 in the example on page 7?
cont_args = {1, {’ep.test.SN’ ’mu’}, {[], [0 4]}};

4 A Brusselator model – brus

Consider the boundary-value problem given by the coupled differential equations

ut = δuξξ + α + u2v − (β + 1)u, vt = ρδvξξ + βu− u2v (9)

8

and boundary conditions

u(0, t) = u(1, t) = α, v(0, t) = v(1, t) = β/α (10)

on the two-dimensional domain (t, ξ) ∈ R×[0, 1], in terms of the vector of problem parameters
p = (α, β, δ, ρ) ∈ R4. We arrive at a finite-dimensional, differential-algebraic problem of the
form

ẋ1 = F1(x, p), 0 = F2(x, p), x = (x1, x2) (11)

by discretizing the unknown functions u(ξ, t) and v(ξ, t) in terms of their nodal values ui(t)
and vi(t) at ξ = ξi := i/N , for i = 0, . . . , N , and the one-dimensional Laplace operator for
i = 1, . . . , N − 1 by a mid-point finite difference formula:

uξξ(ξi, t) 7→ N2
(
ui−1(t)− 2ui(t) + ui+1(t)

)
, (12)

vξξ(ξi, t) 7→ N2
(
vi−1(t)− 2vi(t) + vi+1(t)

)
. (13)

We proceed to encode the vector field (F1, F2) and its Jacobians with respect to the prob-
lem variables and problem parameters in the anonymous functions bruss, bruss_dx, and
bruss_dp, respectively, as shown in the following commands:

>> N = 20;
>> X = 1:N+1;
>> Y = N+1+X;
>> B = [1; zeros(N-1,1); 1];
>> BX = repmat(B,1,N+1);
>> BP = repmat(B,1,4);
>> C = [0; ones(N-1,1); 0];
>> CX = repmat(C,1,N+1);
>> CP = repmat(C,1,4);
>> D = diag([0 -2*ones(1,N-1) 0]) + ...

diag([ones(1,N-1) 0],-1) + ...
diag([0 ones(1,N-1)],1);

>> D = N^2*D;
>> ID = eye(N+1,N+1);
>> O = ones(N+1,1);
>> ZE = zeros(N+1,1);
>> bruss = @(u,p) [

C.*(p(3)*D*u(X)+p(1)+u(X).^2.*u(Y)-(p(2)+1)*u(X))+B.*(p(1)-u(X))
C.*((p(3)*p(4))*D*u(Y)+p(2)*u(X)-u(X).^2.*u(Y))+B.*(p(2)/p(1)-u(Y))

];
>> bruss_dx = @(u,p) [

CX.*(p(3)*D+2*diag(u(X).*u(Y))-(p(2)+1)*ID)-BX.*ID ...
CX.*(diag(u(X).^2))
CX.*(p(2)*ID-2*diag(u(X).*u(Y))) ...
CX.*((p(3)*p(4))*D-diag(u(X).^2))-BX.*ID

];
>> bruss_dp = @(u,p) [

C+B C.*(-u(X)) ...
C.*(D*u(X)) ZE
-B.*(p(2)/p(1)^2) C.*(u(X))+B.*(1/p(1)) ...
C.*(p(4)*D*u(Y)) C.*(p(3)*D*u(Y))

];

9

We compute a family of equilibrium solutions under variations in β by invoking the coco
entry-point function as shown in the sequence of commands below.

>> p0 = [1; 3; 0.075; 1];
>> u0 = [p0(1)*ones(N+1,1); (p0(2)/p0(1))*ones(N+1,1)];
>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’vectorized’, false);
>> ode_fcns = {bruss, bruss_dx, bruss_dp};
>> ode_args = {ode_fcns{:}, u0, {’al’ ’be’ ’de’ ’ro’}, p0};
>> cont_pars = {’be’ ’ep.test.SN’ ’ep.test.HB’ ’ep.test.USTAB’ ...

’atlas.test.FP’};
>> cont_args = {1, cont_pars, [2 7]};
>> bd1 = coco(prob, ’brus1’, @ode_isol2ep, ode_args{:}, cont_args{:});

Here, the initial solution guess contained in p0 and u0 satisfies the boundary conditions, but
not the governing differential equations. The inclusion of the ’ep.test.SN’, ’ep.test.HB’,
’ep.test.USTAB’, and ’atlas.test.FP’ nonembedded continuation parameters ensures that
the values of the saddle-node, Hopf, stability indicator, and fold-point monitor functions are
printed to screen (they are included with the bifurcation data stored during continuation by
default).

We can restart continuation from each of the two branch points found in the previous run
using the ode_BP2ep toolbox constructor, as shown in the following sequence of commands.

>> labs = coco_bd_labs(bd1, ’BP’);
>> for lab = labs

ode_args = {’brus1’, lab};
cont_pars = {’be’ ’ep.test.SN’ ’ep.test.HB’ ’ep.test.USTAB’ ...
’atlas.test.FP’};

cont_args = {1, cont_pars, [2 7]};
run = sprintf(’brus2_%02d’, lab);
coco(prob, run, @ode_BP2ep, ode_args{:}, cont_args{:});

end

We visualize the result of the various continuation runs with the coco_plot_bd bifurcation
data visualizer.

>> figure(1); clf; hold on
>> thm = struct(’special’, {{’BP’, ’HB’}});
>> coco_plot_bd(thm, ’brus1’)
>> thm = struct(’special’, {{’FP’, ’HB’}});
>> for lab=labs

coco_plot_bd(thm, sprintf(’brus2_%02d’, lab))
>> end
>> hold off; grid on

As before, by omission of the second and third arguments, the horizontal axis defaults to
the primary output parameter ’be’ and the vertical axis defaults to the Euclidean norm√
u20 + · · ·+ u2N + v20 + · · ·+ v2N .
The Hopf and saddle-node bifurcation points detected and located during the last set of

continuation runs may serve as starting points for continuation along families of Hopf and
saddle-node bifurcation points. In the calls below, the dimensional deficits of the restricted

10

continuation problems encoded by either of the ode_SN2SN and ode_HB2HB constructors equal6
−1. In either case, a one-dimensional solution manifold results by releasing two inactive con-
tinuation parameters. It follows that, in each of the runs below, the continuation parameters
’be’ and ’de’ are active and varying.

>> HBlabs = coco_bd_labs(bd1, ’HB’);
>> ode_args = {’brus1’, HBlabs(1)};
>> cont_args = {1, {’de’ ’be’ ’ep.test.BT’}, {[0 0.2] [2 7]}};
>> coco(prob, ’brus_HB1’, @ode_HB2HB, ode_args{:}, cont_args{:});
>> rrun = sprintf(’brus2_%02d’, labs(1));
>> bd = coco_bd_read(rrun);
>> HBlabs = coco_bd_labs(bd, ’HB’);
>> vals = coco_bd_vals(bd, HBlabs, ’be’);
>> [v i] = min(vals);
>> ode_args = {rrun, HBlabs(i)};
>> cont_args = {1, {’de’ ’be’}, {[0 0.2] [2 7]}};
>> coco(prob, ’brus_HB2’, @ode_HB2HB, ode_args{:}, cont_args{:});
>> SNlabs = coco_bd_labs(bd, ’SN’);
>> vals = coco_bd_vals(bd, SNlabs, ’be’);
>> [v i] = min(vals);
>> prob = coco_set(prob, ’cont’, ’PtMX’, 200);
>> ode_args = {rrun, SNlabs(i)};
>> cont_args = {1, {’de’ ’be’}, {[0 0.2] [2 7]}};
>> coco(prob, ’brus_SN’, @ode_SN2SN, ode_args{:}, cont_args{:});

We note the reference to the ’ep.test.BT’ nonembedded continuation parameter in the call
to the coco entry-point function, in order to ensure that the value of the Bogdanov-Takens
bifurcation test function is printed to screen during continuation along the Hopf bifurcation
curve. The code also illustrates the use of the coco_bd_vals utility for extracting the values
of the continuation parameter ’be’ at the labeled solution points. We visualize the results
of continuation using the sequence of commands shown below.

>> figure(2); clf; hold on
>> coco_plot_bd(’brus_SN’, ’be’, ’de’, ’||x||_2’)
>> thm = struct(’special’, {{’BTP’}});
>> coco_plot_bd(thm, ’brus_HB1’, ’be’, ’de’, ’||x||_2’)
>> coco_plot_bd(thm, ’brus_HB2’, ’be’, ’de’, ’||x||_2’)
>> hold off; grid on; view(3)

where ’||x||_2’ denotes the Euclidean norm
√
u20 + · · ·+ u2N + v20 + · · ·+ v2N .

Exercises

1. Verify the encoding of the vector fields F1 and F2 and their Jacobians obtained by
discretization of the spatial boundary-value problem governing equilibrium solutions

6The condition for Hopf bifurcation equilibrium points implemented in the current version of the ’ep’
toolbox adds 3n+ 1 additional continuation variables and imposes 3n+ 2 additional equations. Hence, the
dimensional deficit is reduced by 1 relative to that of the equilibrium point restricted continuation problem.

11

of the coupled Brusselator equations.

2. Experiment with different values of N and explore spurious results obtained during
continuation along a family of equilibria for small values of N , as well as convergence
properties as N →∞.

3. Consider the encoding of the Brusselator boundary conditions in the vector field F2.
Comment on the relationship between solutions to the differential-algebraic equations

ẋ1 = F1(x, p), 0 = F2(x, p), (14)

and solutions of the ordinary differential equations

ẋ1 = F1(x, p), ẋ2 = F2(x, p), (15)

for arbitrary initial conditions.

4. Perform forward integration with one of Matlab’s ODE integrators using the vector
field encoded in bruss and comment on the way in which the algebraic conditions are
enforced during integration. Visualize the solutions in time and consider parameter
values on either side of a Hopf bifurcation point. Try several initial conditions and
discuss uniqueness, stability of solutions, and smoothness of solution profile.

5 The Laplace Operator – pdeeig

Consider the boundary-value problem

4u = −λ(u+ µeu), uR2\D = 0 (16)

in terms of the vector of problem parameters p = (µ, λ) ∈ R2. Here, the setD is the L-shaped
portion of the open rectangle R := {(x, y) | 0 < x < 2, 0 < y < 3} obtained by removing the
rectangle {(x, y) | 0 < x ≤ 1, 0 < y ≤ 2}. Let the unknown function u(x, y) be represented
by its nodal values ui,j on the grid (xi, yj), i = 1, . . . , 2N + 1, j = 1, . . . , 3N + 1, where
xi = (i− 1)/N and yj = (j − 1)/N . Moreover, approximate the Laplacian on the set D by
the five-point finite-difference approximation

4u(xi, yj) 7→ N2 (ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j) . (17)

We proceed to encode the governing algebraic equations and their Jacobians with respect to
the unknown nodal values and the problem parameters in the anonymous functions pdeeig,
pdeeig_dx, and pdeeig_dp, as shown in the following commands:

12

>> N = 20;
>> P = 3*N+1;
>> Q = 2*N+1;
>> X = reshape(1:P*Q, P, Q);
>> Mask = true(P,Q);
>> Mask(1:end,1) = false;
>> Mask(1:end,end) = false;
>> Mask(1,1:end) = false;
>> Mask(end,1:end) = false;
>> Mask(1:2*N+1,1:N+1) = false;
>> rows = X(Mask);
>> cols = rows;
>> o = ones(numel(rows),1);
>> C = sparse(rows, cols, o, P*Q, P*Q);
>> D = sparse(rows, cols, -4*o, P*Q, P*Q);
>> cols = X(circshift(Mask, [0 1]));
>> D = D + sparse(rows, cols, o, P*Q, P*Q);
>> cols = X(circshift(Mask, [0 -1]));
>> D = D + sparse(rows, cols, o, P*Q, P*Q);
>> cols = X(circshift(Mask, [1 0]));
>> D = D + sparse(rows, cols, o, P*Q, P*Q);
>> cols = X(circshift(Mask, [-1 0]));
>> D = D + sparse(rows, cols, o, P*Q, P*Q);
>> D = N^2*D;
>> rows = X(~Mask);
>> cols = rows;
>> o = ones(numel(rows),1);
>> B = sparse(rows, cols, o, P*Q, P*Q);
>> Id = speye(P*Q, P*Q);
>> pdeeig = @(u,p) D*u + p(2)*(C*u + p(1)*(C*exp(u))) - B*u;
>> pdeeig_dx = @(u,p) D + p(2)*(C + p(1)*(C*spdiags(exp(u),0,Id))) - B;
>> pdeeig_dp = @(u,p) [p(2)*(C*exp(u)) C*u+p(1)*(C*exp(u))];

For µ = 0, a trivial solution family is obtained with ui,j = 0, ∀i, j as shown below.

>> p0 = [0; 0.1];
>> u0 = zeros(P*Q,1);
>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’vectorized’, false);
>> prob = coco_set(prob, ’ep’, ’bifus’, false);
>> prob = coco_set(prob, ’cont’, ’PtMX’, 200);
>> ode_args = {pdeeig, pdeeig_dx, pdeeig_dp, u0, {’mu’ ’la’}, p0};
>> cont_args = {1, ’la’, [-5 50]};
>> bd = coco(prob, ’pdeeig1’, @ode_isol2ep, ode_args{:}, cont_args{:});

We turn off bifurcation detection in order to reduce the demand on run-time memory. Branch
points found during continuation along this family correspond to approximate eigenvalues
of the Laplacian on the domain D with zero Dirichlet boundary conditions. We may restart
continuation from each of these branch points in order to generate the corresponding ap-
proximate eigenfunctions, according to some normalization scheme.

>> labs = coco_bd_labs(bd, ’BP’);
>> prob = coco_set(prob, ’cont’, ’PtMX’, [10 0]);
>> prob = coco_set(prob, ’cont’, ’h0’, 1);

13

>> for lab = labs
prob2 = ode_BP2ep(prob, ’’, ’pdeeig1’, lab);
[fdata uidx] = coco_get_func_data(prob2, ’ep’, ’data’, ’uidx’);
xidx = uidx(fdata.ep_eqn.x_idx);
prob2 = coco_add_func(prob2, ’norm_x’, @norm_x, [], ...
’regular’, ’norm_x’, ’uidx’, xidx);

prob2 = coco_add_event(prob2, ’UZ’, ’BP’, ’norm_x’, 1);
runid = sprintf(’pdeeig2_%02d’, lab);
bd2 = coco(prob2, runid, [], 1, {’la’ ’norm_x’});
figure(1); clf
coco_plot_sol(struct(’plot_sol’, @ef_plot, ’N’, N), runid, ’’)
view([-125 60])
drawnow

end

Here, the coco_get_func_data utility is used to extract the integer indices associated with
the nodal values in the array of continuation variables. Together with the content of the
ep_eqn field of the ’ep’ toolbox data structure (see the documentation for the ep_add toolbox
interface function for more details), these are used to identify the function dependency index
set7 for the nonembedded monitor function norm_x encoded in the program file norm_x.m,
shown below.

function [data y] = norm_x(opts, data, u)
y = norm(u);

end

A boundary event is then detected when the corresponding continuation parameter crosses 1.
The call to the coco_plot_sol core utility includes a plotting theme structure that

specifies the problem-specific graphing action to be applied to the solution associated with
the ’UZ’ event in the run runid. The encoding of ef_plot below uses the value of N to
generate a surface mesh representation of the eigenfunction.

function thm = ef_plot(thm, ~, ~, bd, ~)

persistent X Y P Q N

if isempty(X) || ~(N==thm.N)
N = thm.N;
P = 3*N+1;
Q = 2*N+1;
[X, Y] = meshgrid(linspace(0,2,Q), linspace(0,3,P));

end
lab = coco_bd_labs(bd, ’UZ’);
U = coco_bd_val(bd, lab, ’x’);
U = reshape(U, P, Q);
mesh(X,Y,U)

thm.xlab = ’x’; thm.ylab = ’y’; thm.zlab = ’u’;

end

7Function dependency index set: an ordered set of integer indices associated with elements of the vector
of continuation variables that constitute the arguments of a coco-compatible function encoding.

14

Exercises

1. Verify the encoding of the vector field and its Jacobians obtained by discretization of
the spatial boundary-value problem governing eigenfunctions of the Laplace operator.

2. Comment on the reason for defining the discretization on the entire rectangle R instead
of only on the L-shaped subset D. How exactly is this implemented?

3. Use the approach in this section to compute the eigenfunctions and eigenvalues for the
Laplace operator on a circular domain. Use conformal mapping techniques to extend
the approach to other nontrivial domains.

4. Comment on the use of the Euclidean norm of the vector of problem variables for the
normalization of the eigenfunctions. What happens when you vary N? Implement
a modification to the function norm_x that reduces to the L2-norm for N → ∞ and
discuss your observations.

6 Chemical oscillations – chemosc

Let z = 1− x1 − x2 − x3 and consider the quadratic vector field

F (x, p) =

 2p1z
2 − 2p5x

2
1 − p3x1x2

p2z − p6x2 − p3x1x2
p4z − p4p7x3

 (18)

corresponding to the Bykov-Yablonskii-Kim model8 of oxidation of carbon monoxide on
platinum, expressed in terms of the vector of problem variables x ∈ R3 and vector of problem
parameters p ∈ R7. We proceed to encode vectorized implementations of the vector field and
its Jacobians with respect to the problem variables and parameters in the functions bykov,
bykov_dx, and bykov_dp shown below.

function f = bykov(x, p)

p1 = p(1,:);
p2 = p(2,:);
p3 = p(3,:);
p4 = p(4,:);
p5 = p(5,:);
p6 = p(6,:);
p7 = p(7,:);

8See “Tutorial IV: Two-parameter bifurcation analysis of equilibria and limit cy-
cles with matcont,” by Yu.A. Kuznetsov, from September 20, 2011, available at
http://www.staff.science.uu.nl/~kouzn101/NBA/LAB4.pdf.

15

x1 = x(1,:);
x2 = x(2,:);
x3 = x(3,:);

z = 1 - x1 - x2 - x3;
f = [2*p1.*z.^2 - 2*p5.*x1.^2 - p3.*x1.*x2;

p2.*z - p6.*x2 - p3.*x1.*x2;
p4.*z - p7.*p4.*x3];

end

function J = bykov_dx(x, p)

p1 = p(1,:);
p2 = p(2,:);
p3 = p(3,:);
p4 = p(4,:);
p5 = p(5,:);
p6 = p(6,:);
p7 = p(7,:);

x1 = x(1,:);
x2 = x(2,:);
x3 = x(3,:);

z = 1 - x1 - x2 - x3;
J = zeros(3,3,numel(z));

J(1,1,:) = -4*p5.*x1 - p3.*x2 - 4*p1.*z;
J(1,2,:) = -p3.*x1 - 4*p1.*z;
J(1,3,:) = -4*p1.*z;
J(2,1,:) = -p2 - p3.*x2;
J(2,2,:) = -p2 - p6 - p3.*x1;
J(2,3,:) = -p2;
J(3,1,:) = -p4;
J(3,2,:) = -p4;
J(3,3,:) = -p4 - p4.*p7;

end

function J = bykov_dp(x, p)

p4 = p(4,:);
p7 = p(7,:);

x1 = x(1,:);
x2 = x(2,:);
x3 = x(3,:);

z = 1 - x1 - x2 - x3;
J = zeros(3,7,numel(z));

J(1,1,:) = 2*z.^2;

16

J(1,3,:) = -x1.*x2;
J(1,5,:) = -2*x1.^2;
J(2,2,:) = z;
J(2,3,:) = -x1.*x2;
J(2,6,:) = -x2;
J(3,4,:) = z - p7.*x3;
J(3,7,:) = -p4.*x3;

end

We compute families of equilibria under variations in p2 for p7 = 0.4, p7 = 0.15, and
p7 = 2.0, respectively, and fixed values of the other problem parameters, by invoking the
coco entry-point function as shown in the sequence of commands below.

>> x0 = [0.001137; 0.891483; 0.062345];
>> pnames = {’p1’ ’p2’ ’p3’ ’p4’ ’p5’ ’p6’ ’p7’};
>> p0 = [2.5; 2.204678; 10; 0.0675; 1; 0.1; 0.4];
>> prob = coco_prob();
>> prob = coco_set(prob, ’ep’, ’NSA’, true);
>> ode_fcns = {@bykov, @bykov_dx, @bykov_dp};
>> ode_args = {ode_fcns{:}, x0, pnames};
>> cont_args = {1, ’p2’, [0.4 3]};
>> coco(prob, ’p7=0.4’, @ode_isol2ep, ode_args{:}, p0, cont_args{:});
>> p0(7) = 0.15;
>> coco(prob, ’p7=0.15’, @ode_isol2ep, ode_args{:}, p0, cont_args{:});
>> p0(7) = 2.0;
>> coco(prob, ’p7=2.0’, @ode_isol2ep, ode_args{:}, p0, cont_args{:});

Here, the ’NSA’ setting of the ’ep’ toolbox is set to the non-default value of true, in order
to ensure that neutral saddles are detected and located during continuation.

We may continue the family of Hopf bifurcations based at the second Hopf bifurcation
point found during continuation with p7 = 0.4, as suggested by the construction below.

>> bd = coco_bd_read(’p7=0.4’);
>> labs = coco_bd_labs(bd, ’HB’);
>> prob = coco_prob();
>> prob = coco_set(prob, ’cont’, ’PtMX’, 50);
>> prob = ode_HB2HB(prob, ’’, ’p7=0.4’, labs(2));

For non-degenerate Hopf bifurcation points, the super- or subcritical nature of the bifur-
cation (i.e., the orientation of the family of periodic orbits emanating from the bifurcation
point) is determined by the sign of the first Lyapunov coefficient. Specifically, let v and
w denote eigenvectors of A := ∂xF (x, p) and its transpose, respectively, corresponding to
the eigenvalues iω and −iω, such that v∗T · v = w∗T · v = 1. Furthermore, let B denote
the 3-tensor, such that the i-th component of B(a, b) is given by aT · ∂xxFi(x, p) · b. For a
quadratic vector field, the first Lyapunov coefficient is then given by the real part of

1

2ω
w∗T ·

(
B
(
v∗, (2iωIn − A)−1 ·B(v, v)

)
− 2B

(
v,A−1 ·B(v, v∗)

))
, (19)

where ∗ denotes complex conjugation. We encode the computation of the first Lyapunov
coefficient in the coco-compatible function lyapunov in the program file lyapunov.m, shown

17

below.

function [data y] = lyapunov(prob, data, u)

x = u(data.x_idx);
p = u(data.p_idx);

A = bykov_dx(x,p);
[X D] = eig(A);
[m idx] = min(abs(real(diag(D))));
v = X(:,idx);
om = imag(D(idx,idx));
vb = conj(v);
if m>1e-6
y = NaN;
return

end

[X D] = eig(A’);
[m idx] = min(abs(real(diag(D))));
w = X(:,idx);

if om*imag(D(idx,idx))>0
w = conj(w);

end
w = w/conj(w’*v);

B = bykov_dxdx(x,p);
B1 = zeros(numel(x),1);
B3 = zeros(numel(x),1);
for i=1:numel(x)
Bmat = reshape(B(i,:,:),[numel(x),numel(x)]);
B1(i) = v.’*Bmat*v;
B3(i) = v.’*Bmat*vb;

end
t1 = (2*sqrt(-1)*om*eye(numel(x))-A)\B1;
t2 = A\B3;
B2 = zeros(numel(x),1);
B4 = zeros(numel(x),1);
for i=1:numel(x)
Bmat = reshape(B(i,:,:),[numel(x),numel(x)]);
B2(i) = vb.’*Bmat*t1;
B4(i) = v.’*Bmat*t2;

end

y = real(w’*B2-2*w’*B4)/2/om;

end

The third input argument is here assumed to contain an array of numerical values for the
problem variables and problem parameters, indexed by the x_idx and p_idx fields, respec-
tively, of the function data structure. The call to the function bykov_dxdx, whose encoding
in the program file bykov_dxdx.m is shown below, returns a three-dimensional array whose
(i, j, k)-th entry equals the second partial derivative ∂2Fi(x, p)/∂xj∂xk.

18

function J = bykov_dxdx(x, p)

p1 = p(1,:);
p3 = p(3,:);
p5 = p(5,:);

J = zeros(3,3,3,numel(p1));

J(1,1,1,:) = 4*p1 - 4*p5;
J(1,1,2,:) = 4*p1 - p3;
J(1,1,3,:) = 4*p1;
J(1,2,1,:) = 4*p1 - p3;
J(1,2,2,:) = 4*p1;
J(1,2,3,:) = 4*p1;
J(1,3,1,:) = 4*p1;
J(1,3,2,:) = 4*p1;
J(1,3,3,:) = 4*p1;
J(2,1,2,:) = -p3;
J(2,2,1,:) = -p3;

end

We can now append the corresponding nonembedded monitor function to the continuation
problem and introduce a special point associated with a zero crossing of the value of the first
Lyapunov coefficient, corresponding to a generalized Hopf bifurcation.

>> [data uidx] = coco_get_func_data(prob, ’ep’, ’data’, ’uidx’);
>> prob = coco_add_func(prob, ’lyap’, @lyapunov, data.ep_eqn, ...

’regular’, ’L1’, ’uidx’, uidx);
>> prob = coco_add_event(prob, ’GH’, ’L1’, 0);
>> coco(prob, ’HB-curve’, [], 1, {’p2’ ’p7’}, [0.4 3]);

Exercises

1. Verify that the default value of the ’NSA’ setting of the ’ep’ toolbox implies that
neutral saddles are not detected during continuation.

2. The ’HB-curve’ run includes the detection and location of several points with point
type ’BTP’. Verify that these separate portions of the solution manifold corresponding
to Hopf bifurcations and neutral saddles, respectively.

3. Perform continuation under simultaneous variations in p2 and p7 along the family of
saddle-node bifurcations based at one of the bifurcation points detected and located
for p7 = 0.4. Include monitoring and detection of zero crossings of the quadratic
normal–form coefficient given by

1

2
wT ·B(v, v), (20)

19

where v is a unit nullvector of the Jacobian A = ∂xF (x, p), w is a nullvector of AT
such that wT · v = 1, and B is defined as above. What are the points of intersection of
this curve with the curve of Hopf bifurcations computed above?

4. The general formula for the first Lyapunov coefficient includes terms associated with
the third partial derivatives of the vector field with respect to the state. Implement
the appropriate modifications to the lyapunov function and apply this to the determi-
nation of the super- or subcritical nature of Hopf bifurcations in one of the dynamical
systems used to illustrate the theory in “Numerical Methods for the Generalized Hopf
Bifurcation,” by Govaerts, W., Kuznetsov, Yu.A., and Sijnave, B., SIAM Journal of
Numerical Analysis, 38(1), pp. 329-346, 2000.

7 Isola curves – isola

Closed curves of equilbria in the combined space of problem variables and subsets of problem
parameters are known as isolas. These may be tracked under variations in other problem
parameters by simultaneous continuation of a discrete number of equilibria along such a
curve, together with conditions that the corresponding interpolating polygon approximates
the isola.

Consider the vector field

F : (x, p) 7→
(

−u+ λτ(1− u)ev

−v + 8λτ(1− u)ev − τv

)
(21)

describing chemical reactions in a continuous stirred tank reactor9 and expressed in terms
of the vector of problem variables x = (u, v) ∈ R2 and the vector of problem parameters
p = (τ, λ) ∈ R2. Vectorized encodings of the vector field and its Jacobians with respect to x
and p are given in the functions cstr, cstr_dx, and cstr_dp shown below.

function f = cstr(x, p)

u = x(1,:);
v = x(2,:);
t = p(1,:);
l = p(2,:);

z = exp(v);

f = [-u + l.*t.*(1-u).*z; -v + 8*l.*t.*(1-u).*z-t.*v];

end

9See related analysis in “On the Numerical Continuation of Isolas of Equilibria,” by Avitabile, Desroches,
and Rodriquez, International Journal of Bifurcation and Chaos, 22(11), art. no. 1250277, 2012.

20

function J = cstr_dx(x, p)

u = x(1,:);
v = x(2,:);
t = p(1,:);
l = p(2,:);

z = exp(v);
J = zeros(2,2,numel(z));

J(1,1,:) = -1 - l.*t.*z;
J(1,2,:) = l.*t.*(1-u).*z;
J(2,1,:) = -8*l.*t.*z;
J(2,2,:) = -1+8*l.*t.*(1-u).*z-t;

end

function J = cstr_dp(x, p)

u = x(1,:);
v = x(2,:);
t = p(1,:);
l = p(2,:);

z = exp(v);
J = zeros(2,2,numel(z));

J(1,1,:) = l.*(1-u).*z;
J(1,2,:) = t.*(1-u).*z;
J(2,1,:) = 8*l.*(1-u).*z - v;
J(2,2,:) = 8*t.*(1-u).*z;

end

Continuation along a family of equilibria under variations in τ , as shown below, produces a
sequence of solution points on an apparently closed curve.

>> ode_fcns = {@cstr, @cstr_dx, @cstr_dp};
>> ode_args = {ode_fcns{:}, [0.75 4], {’tau’ ’lambda’}, [0.5; 0.11]};
>> cont_args = {1, ’tau’, [0 2]};
>> bd1 = coco(’initial’, @ode_isol2ep, ode_args{:}, cont_args{:});

As the default atlas algorithm double-covers portions of the solution manifold, we identify
an initial approximating polygon by the sequence of solution points starting with the second
Hopf bifurcation point and ending with the third Hopf bifurcation point located during
continuation (since these coincide). For each such polygon with N distinct vertices, we
associate a parameter value si to the i-th vertex, such that 0 = s1 < · · · < sN+1 = L and

si − si−1 =
√

100(ui − ui−1)2 + (vi − vi−1)2 + 42.25(τi − τi−1)2. (22)

Linear interpolation between the polygonal vertices then assigns a unique value of s to each
point on the polygon.

21

>> idxs = coco_bd_idxs(bd1, ’HB’);
>> vars = coco_bd_col(bd1, ’x’);
>> pars = coco_bd_col(bd1, {’tau’ ’lambda’});
>> weights = [10; 1; 6.5; 1];
>> s = 0;
>> for idx = idxs(2)+1:idxs(3)

dw = [vars(:,idx); pars(:, idx)] - [vars(:,idx-1); pars(:, idx-1)];
dw = dw.*weights;
s = [s; s(end) + norm(dw)];

end

We proceed to construct an instance of a Hopf bifurcation continuation problem, with
initial solution guess given by the second Hopf bifurcation point located above, together with
N − 1 instances of a regular equilibrium continuation problem, with initial solution guesses
sampled uniformly in s along the approximating polygon found above.

>> labs = coco_bd_labs(bd1, ’HB’);
>> prob = coco_prob();
>> prob = ode_HB2HB(prob, ’isola1’, ’initial’, ’’, labs(2));
>> N = 50;
>> vars = interp1(s, vars(:,idxs(2):idxs(3))’, 0:s(end)/N:s(end))’;
>> pars = interp1(s, pars(:,idxs(2):idxs(3))’, 0:s(end)/N:s(end))’;
>> prob = coco_set(prob, ’ep’, ’SN’, ’off’, ’HB’, ’off’);
>> for idx = 2:N

x0 = vars(:,idx);
p0 = pars(:,idx);
oid = sprintf(’isola%d’, idx);
prob = ode_isol2ep(prob, oid, @cstr, @cstr_dx, @cstr_dp, x0, p0);

end

The corresponding composite continuation problem has dimensional deficit 2N − 3, since
the dimensional deficit of the Hopf bifurcation continuation problem is −1 and each call
to ode_isol2ep constructs an equilibrium continuation problem with dimensional deficit of
2. We reduce the dimensional deficit to N − 2 by introducing N − 1 gluing conditions that
constrain all redundant copies of λ to equal the instance associated with the Hopf bifurcation
point. We impose an additional N conditions on the collection of continuation variables by
requiring that si − si−1 = ` for all i = 2, . . . , N + 1 for some unknown variable `.

>> [data uidx] = coco_get_func_data(prob, ’isola1.ep’, ’data’, ’uidx’);
>> varidx = uidx(data.ep_eqn.x_idx);
>> paridx = uidx(data.ep_eqn.p_idx);
>> for idx = 2:N

fid = sprintf(’isola%d.ep’, idx);
[data uidx] = coco_get_func_data(prob, fid, ’data’, ’uidx’);
varidx = [varidx uidx(data.ep_eqn.x_idx)];
paridx = [paridx uidx(data.ep_eqn.p_idx)];

end
>> prob = coco_add_glue(prob, ’glue’, paridx(2,1:end-1), paridx(2,2:end));
>> uidx = [varidx; paridx(1,:)];
>> prob = coco_add_func(prob, ’dist’, @wdist, ...

struct(’w’, repmat(weights(1:3), [1 N])), ’zero’, ...
’uidx’, uidx, ’u0’, s(end)/N);

22

Here, the function wdist is implemented in the coco-compatible encoding shown below.

function [data y] = wdist(prob, data, u)

np = (numel(u)-1)/3;
pt = reshape(u(1:end-1), [3 np]);
ds = repmat(u(end), [np 1]);

dw = (pt - circshift(pt,[0 -1])).*data.w;
y = sqrt(sum(dw.^2, 1))’ - ds;

end

Finally, we introduce a function monitoring the value of ` and associate this with the initially
inactive continuation parameter ’L’. Continuation along a one-dimensional family of isolas
then results by releasing the continuation parameters ’L’, ’lambda’ and ’tau’.

>> uidx = coco_get_func_data(prob, ’dist’, ’uidx’);
>> prob = coco_add_pars(prob, ’length’, uidx(end), ’L’);
>> prob = coco_set(prob, ’cont’, ’PtMX’, [20 50]);
>> bd2 = coco(prob, ’isola’, [], 1, {’L’ ’lambda’ ’tau’}, [0 1]);

We may visualize the result of continuation by extracting the polygonal vertices from
individual solution files, as shown in the following sequence of commands.

>> figure(1); clf; hold on; grid on; axis([0 1.5 0.2 1])
>> labs = coco_bd_labs(bd2);
>> for lab=labs

var = zeros(N+1,4);
for i=1:N
sol = ep_read_solution(sprintf(’isola%d’, i), ’isola’, lab);
var(i,:) = [sol.x; sol.p]’;

end
var(N+1,:) = var(1,:);
plot(var(:,3), var(:,1),’r’)
plot(var(1,3), var(1,1),’ko’)
drawnow

end
>> hold off

The ’ep’ utility ep_read_solution extracts a solution structure whose x and p field contain
the values of the problem variables and problem parameters, respectively.

Exercises

1. Modify the plotting of individual isolas to distinguish between curve segments of stable
and unstable equilibria, respectively.

2. Perform continuation of one of the Hopf bifurcation points found during the initial run
under simultaneous variation in τ and λ and graph the corresponding solution curve

23

on top of the family of isolas.

3. Experiment with different values of the weights appearing under the radical in Eq. (22)
and the number N of polygonal vertices and comment on the corresponding conver-
gence and accuracy.

4. As an alternative to anchoring the approximating polygons on a Hopf bifurcation,
consider imposing the phase condition

N+1∑
i=2

(
(u∗i − u∗i−1)(ui − u∗i−1) + (v∗i − v∗i−1)(vi − v∗i−1) + (τ ∗i − τ ∗i−1)(τi − τ ∗i−1)

)
= 0 (23)

on the family of polygonal vertices. Here, the ∗ denotes a reference polygon, e.g., one
obtained in a previous continuation step. Make the appropriate changes to the matlab
script and comment on differences in interpretation and execution.

8 Optimization – cusp_optim

Consider the problem of finding stationary points of the function (x, κ, λ) 7→ κ along the
manifold of equilibria for the cusp normal form

ẋ = κ− x
(
λ− x2

)
(24)

in terms of the scalar problem variable x ∈ R and vector of problem parameters p = (κ, λ) ∈
R2. In this case, κ = x(λ−x2) along the entire manifold and, consequently, stationary points
occur wherever x = λ− 3x2 = 0, i.e., for x = κ = λ = 0.

Alternatively, consider the Lagrangian

L(x, κ, λ, µκ, µλ, `eq, ηκ, ηλ) = µκ + `eq
(
κ− x

(
λ− x2

))
+ ηκ(κ− µκ) + ηλ(λ− µλ) (25)

in terms of the continuation parameters µκ and µλ, and the Lagrange multipliers `eq, ηκ, and
ηλ. Necessary conditions for stationary points along the constraint manifold correspond to
points (x, κ, λ, µκ, µλ, `eq, ηκ, ηλ) for which δL = 0 for any infinitesimal variations δx, δκ, δλ,
δµκ, δµλ, δ`eq, δηκ, and δηλ. In this case, these conditions take the form

κ− x
(
λ− x2

)
= 0, κ− µκ = 0, λ− µλ = 0, (26)

`eq(3x
2 − λ) = 0, `eq + ηκ = 0, −x`eq + ηλ = 0, (27)

1 − ηκ = 0, and ηλ = 0. The unique solution to these conditions is the point x = κ = λ =
µκ = µλ = ηλ = 0, `eq = −1, and ηκ = 1.

Stationary points along the solution manifold may be located using a method of staged
continuation applied to the extended continuation problem obtained by combining (26) and

24

(27) with ηκ−νκ = 0 and ηλ−νλ = 0 in terms of the continuation variables (x, κ, λ, `eq, ηκ, ηλ)
and continuation parameters (µκ, µλ, νκ, νλ). The dimensional deficit of this extended con-
tinuation problem equals 2. We get one-dimensional solution manifolds by designating one
of the continuation parameters as inactive.

Suppose, for example, that µκ, νκ, and νλ are active and µλ is inactive. Solutions of the
form (x, κ, λ, µκ, µλ, `eq, ηκ, ηλ, νκ, νλ) to the corresponding restricted continuation problem
are located on the three one-dimensional manifolds(

x, x(µλ − x2), µλ, x(µλ − x2), µλ, 0, 0, 0, 0, 0
)

(28)

and (
±
√
µλ√
3
,±

2µλ
√
µλ

3
√

3
, µλ,±

2µλ
√
µλ

3
√

3
, µλ, `eq,−`eq,±

`eq
√
µλ√

3
,−`eq,±

`eq
√
µλ√

3

)
, (29)

parameterized by x and `eq, respectively. The manifolds in (29) intersect the manifold in
(28) at the points (

±
√
µλ√
3
,±

2µλ
√
µλ

3
√

3
, µλ,±

2µλ
√
µλ

3
√

3
, µλ, 0, 0, 0, 0, 0

)
, (30)

corresponding to local extrema in the value of κ along the first manifold.
Notably, there is a unique point on each of the latter manifolds at which ηκ = 1. If

we consider the restricted continuation problem obtained with µκ, µλ, and νλ active and νκ
inactive and equal to 1, then solutions are located on the one-dimensional manifold(

x, 2x3, 3x2, 2x3, 3x2,−1, 1,−x, 1,−x
)

(31)

parameterized by x. This manifold intersects the manifolds in (29) at the points(
±
√
µλ√
3
,±

2µλ
√
µλ

3
√

3
, µλ,±

2µλ
√
µλ

3
√

3
, µλ,−1, 1,∓

√
µλ√
3
, 1,∓

√
µλ√
3

)
. (32)

Notably, the point along the tertiary manifold in (31) with ηλ = 0 coincides with the unique
stationary point found previously.

We proceed to implement the extended continuation problem in coco using the appro-
priate ’ep’ toolbox constructors. We encode the vector field and its derivatives in the ’ode’
compatible functions below.

function f = cusp(x,p)
f = p(1)-x*(p(2)-x^2);
end

function dfdx = cusp_dx(x,p)
dfdx = 3*x^2-p(2);
end

25

function dfdp = cusp_dp(x,p)
dfdp = [1 -x];
end

function dfdxdx = cusp_dxdx(x,p)
dfdxdx = 6*x;
end

function dfdxdp = cusp_dxdp(x,p)

dfdxdp = zeros(1,1,2);
dfdxdp(1,1,2) = -1;

end

function dfdpdp = cusp_dpdp(x,p)
dfdpdp = zeros(1,2,2);
end

In the first stage of construction, we use the ode_isol2ep toolbox constructor to encode
the constraint conditions (26), as shown in the sequence of commands below.

>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’vectorized’, false);
>> fcns = {@cusp, @cusp_dx, @cusp_dp, @cusp_dxdx, @cusp_dxdp, @cusp_dpdp};
>> prob1 = ode_isol2ep(prob, ’’, fcns{:}, 0, {’ka’ ’la’}, [0; 0.5]);

Here ’ka’ and ’la’ represent the continuation parameters µκ and µλ, respectively. The
adjoint conditions (27) are appended to the continuation problem using the adjt_isol2ep

constructor, as shown below.

>> prob1 = adjt_isol2ep(prob1, ’’);

This call initializes all Lagrange multipliers at 0 and introduces the continuation parameters
’d.ka’ and ’d.la’ corresponding to νκ and νλ, respectively.

The first stage of continuation is now realized using the following call to the coco entry-
point function.

>> bd1 = coco(prob1, ’cusp1’, [], 1, {’ka’ ’d.ka’ ’d.la’}, [-0.5 0.5]);

We can switch to a secondary branch at either branch point located during this stage. In the
code shown below, in the second stage of continuation, we continue from the second branch
point until ’d.ka’ equals 1.

>> BPlab = coco_bd_labs(bd1, ’BP’);
>> prob2 = ode_BP2ep(prob, ’’, ’cusp1’, BPlab(1));
>> prob2 = adjt_BP2ep(prob2, ’’, ’cusp1’, BPlab(1));
>> cont_args = {1, {’d.ka’ ’ka’ ’d.la’}, {[0 1] [-0.5 0.5]}};
>> bd2 = coco(prob2, ’cusp2’, [], cont_args{:});

The third, and final, stage of continuation results from the next sequence of commands:

26

>> lab = coco_bd_labs(bd2, ’EP’);
>> prob3 = ode_ep2ep(prob, ’’, ’cusp2’, lab(2));
>> prob3 = adjt_ep2ep(prob3, ’’, ’cusp2’, lab(2));
>> prob3 = coco_add_event(prob3, ’OPT’, ’d.la’, 0);
>> cont_args = {1, {’d.la’ ’ka’ ’la’}, {[], [-0.5 0.5], [-2 2]}};
>> coco(prob3, ’cusp3’, [], cont_args{:});

Here, every special point with ’d.la’ equal to 0 that is detected during continuation is as-
signed the ’OPT’ label. We visualize the results of this staged approach to locating stationary
points using the following commands:

>> figure(1); clf; hold on
>> coco_plot_bd(’cusp1’, ’ka’, ’la’, ’x’)
>> thm = struct();
>> thm.ustab = ’’;
>> thm.lspec = {’g-’, ’LineWidth’, 1};
>> thm.special = {’OPT’};
>> thm.OPT = {’kp’, ’MarkerFaceColor’, ’r’, ’MarkerSize’, 8};
>> coco_plot_bd(thm, ’cusp3’, ’ka’, ’la’, ’x’)
>> hold off; grid on; view(3)

We use a theme structure in the call to ode_plot_bd to override the default ’ep’ theme,
since the tertiary solution manifold consists of approximations to saddle-node bifurcations
of near-critical stability.

Exercises

1. Explain why the manifold in (31) consists of saddle-node bifurcations of the cusp
normal form.

2. Explain why stationary points of the function (x, κ, λ) 7→ κ on the manifold of equilibria
for the cusp normal form may be found from consideration of the Lagrangian

L(x, κ, λ, `eq) = κ+ `eq(κ− x
(
λ− x2

)
)

What are the advantages and disadvantages of this formulation compared to (25) for
the theoretical analysis? What about for the method of staged continuation?

3. Consider the problem of finding stationary points of the function (x, κ, λ) 7→ λ along
the manifold of equilibria for the cusp normal form. Repeat the analysis in this section
and verify your theoretical predictions using coco.

4. Find stationary points of the function (x, y, z) 7→ x along the manifold of solutions to
the algebraic equation

(r2 + 2y − 1)
(
(r2 − 2y − 1)2 − 8z2

)
+ 16xz(r2 − 2y − 1) = 0,

where r2 = x2+y2+z2, and verify your predictions using staged continuation in coco.

27

9 Toolbox reference
The toolbox constructors implement zero and monitor functions appropriate to the nature
of the continuation problem and the detection of special points along the solution mani-
fold. Event handlers ensure that solution data specifically associated with special points is
appropriately stored to disk.

9.1 Zero problems

For continuation of general equilibria, the zero problem is given in terms of the vector
of continuation variables u = (x, p) by Φ(u) = 0, where Φ : u 7→ F (x, p) is the corre-
sponding family of zero functions. Its dimensional deficit equals the number q of problem
parameters. Simultaneous continuation of arrays of perturbations and their images under
the Jacobian ∂xF (x, p) is accomplished using the composite zero problem Φ(u) = 0, where
u = (x, p, vec(v), vec(w)), in terms of the vectorization operator vec, and

Φ : u 7→
(

F (x, p)
∂xF (x, p) · v − w

)
(33)

is the corresponding family of zero functions. Its dimensional deficit equals q + nm, where
m equals the number of columns of v.

In the current implementation of the ’ep’ toolbox, the zero problem for continuation
of saddle-node bifurcation points is given in terms of the vector of continuation variables
u = (x, p, v, w) by Φ(u) = 0, where

Φ : u 7→

F (x, p)

∂xF (x, p) · v − w
w

vT · v − 1

 (34)

is the corresponding family of zero functions. Its dimensional deficit equals q − 1.
Finally, in the current implementation of the ’ep’ toolbox, the zero problem for contin-

uation of Hopf bifurcation points is given in terms of the vector of continuation variables
u = (x, p, v, ṽ, w, k) by Φ(u) = 0, where

Φ : u 7→

F (x, p)

∂xF (x, p) · v − ṽ
∂xF (x, p) · ṽ − w

kv + w
vT · v − 1
nT · v

 (35)

is the corresponding family of zero functions. Its dimensional deficit equals q−1. The vector
n is updated before each continuation step by normalizing the vector

(−ṽT · v)v + (vT · v)ṽ. (36)

28

9.2 Calling syntax

The calling syntax for a generic ’ep’ toolbox constructor tbc_ctr is of the form

prob = tbx_ctr(prob, oid, varargin)

where prob denotes a (possibly empty) continuation problem structure and oid is a string
representing an object instance identifier.

In the case of the ode_isol2ep toolbox constructor, the varargin input argument adheres
to the following syntax

varargin = fcns x0 [pnames] p0 [opts]

where

fcns = @f [@dfdx [@dfdp [@dfdxdx [@dfdxdp [@dfdpdp]]]]]

Here, @f denotes a required function handle to the encoding of the operator F , and each of the
optional arguments @dfdx, @dfdp, @dfdxdx, @dfdxdp, and @dfdpdp is either an empty array
([]) or a function handle to the corresponding array of partial derivatives with respect to the
state variables and problem parameters, respectively. Notably, if adjoint equations are to
be constructed using the adjt_isol2ep constructor, then the preceding call to ode_isol2ep

must include explicit function handles to encodings of the Jacobians with respect to x and
p, respectively.

An initial solution guess for the problem variables and problem parameters is given by
the x0 and p0 input arguments, respectively. An optional designation of string labels for
continuation parameters assigned to track the problem parameters is provided with pnames,
which is either a single string or a cell array of strings. An error is thrown if the number of
string labels in this optional argument, when present, differs from the number of elements of
p0. The optional opts argument is either of the strings ’-ep-end’ and ’-end-ep’, indicating
the end of input to the ode_isol2ep toolbox constructor, or the string ’-var’ followed by
a numerical matrix with n rows, indicating the simultaneous continuation of arrays of per-
turbations and their images under the Jacobian ∂xF (x, p). In the latter case, the numerical
matrix constitutes an initial solution guess for the variable v in (33).

For each of the ode_ep2ep, ode_BP2ep, ode_HB2HB, and ode_SN2SN toolbox constructors,
the varargin input argument adheres to the syntax

varargin = run [soid] lab [opts]

Here, run denotes a string identifying a previous run and lab is an integer identifying the
corresponding solution file. The optional argument soid denotes a source object instance
identifier, in the case that this differs from oid. In all cases, the optional opts argument
may equal either of the strings ’-ep-end’ and ’-end-ep’, thereby denoting explicitly the
end of the sequence of arguments to an ’ep’ toolbox constructor. For ode_ep2ep, opts may
also contain the string ’-switch’, which, when present, implies that continuation should
proceed along a secondary solution branch through the given solution. For ode_ep2ep and
ode_BP2ep, opts may also contain the string ’-var’ followed by a numerical matrix with n

29

rows, indicating the simultaneous continuation of arrays of perturbations and their images
under the Jacobian ∂xF (x, p). In the latter case, the numerical matrix constitutes an initial
solution guess for the variable v in (33).

9.3 Adjoint functions

For continuation of general equilibria, the contributions to the adjoint equations associated
with variations in x and p are expressed in terms of the Jacobians ∂xF (x, p) and ∂pF (x, p)
and a subset of components of the vector of continuation multipliers λ. The appropriate
changes to the continuation problem structure are invoked using the adjt_isol2ep con-
structor, following a preceding call to the ode_isol2ep constructor that includes function
handles to explicit encodings of these Jacobians. Specifically, in the call

prob = adjt_isol2ep(prob, oid)

the oid argument denotes an object identifier associated with the toolbox instance created
by the preceding call to ode_isol2ep. The corresponding components of λ are initialized to
0.

If the preceding call to ode_isol2ep includes an explicit list of parameter labels, then
the corresponding additions to the adjoint equations are automatically encoded by the call
to adjt_isol2ep. The corresponding components of the vector of continuation multipliers
η are initialized to 0.

In a similar fashion, a call to ode_ep2ep or ode_BP2ep may be followed by a call to
adjt_ep2ep or adjt_BP2ep, respectively, with identical arguments, in order to append the
contributions to the adjoint equations associated with the reconstructed continuation prob-
lem. In either case, the associated elements of the vectors of continuation multipliers λ and
η are automatically initialized from the corresponding values stored in a solution file.

9.4 Continuation parameters and toolbox settings

The inclusion of the pnames optional argument in the call to the ode_isol2ep toolbox con-
structor ensures the encoding in the continuation problem structure of initially inactive,
embedded continuation parameters equal in number to the number of string labels (which
must equal the number of problem parameters). These string labels are stored in the function
data structure, written to disk with each solution file, and reused in the event that a con-
tinuation problem is created from saved solution data using either of the remaining toolbox
constructors. A subsequent call to adjt_isol2ep, adjt_ep2ep, or adjt_BP2ep ensures the
encoding in the continuation problem structure of an accompanying set of initially inactive
embedded continuation parameters corresponding to the associated subset of the vector of
continuation multipliers η, and with labels obtained by appending ’d.’ to the original string
labels.

If the ’bifus’ option of the ’ep’ toolbox is set to true (as it is by default), the
ode_isol2ep, ode_ep2ep, and ode_BP2ep constructors also encode the three nonembedded
continuation parameters ’OID.ep.test.HB’, ’OID.ep.test.SN’, and ’OID.ep.test.USTAB’,

30

associated with detection of Hopf bifurcations/neutral saddle points and saddle-node bifur-
cations, and with monitoring the Lyapunov stability (the number of unstable eigenvalues) of
the equilibrium point, respectively. In this case, changes to the sign of the first two of these
continuation parameters trigger the detection of special points denoted by ’HB’ and ’SN’,
respectively. If the ’NSA’ option of the ’ep’ toolbox is set to true (it is false by default),
then neutral saddles, denoted by ’NSA’, are also located.

If the ’BTP’ option of the ’ep_HB’ toolbox is set to true (as it is by default), the
ode_HB2HB constructor encodes the additional single nonembedded continuation parame-
ter ’OID.ep.test.BT’ associated with the detection of Bogdanov-Takens bifurcation points.
Changes to the sign of this continuation parameter trigger the detection of special points
denoted by ’BTP’.

To set options associated with a specific ’ep’ instance with object instance identifier OID,
use the syntax

>> prob = coco_set(prob, ’OID.ep’, ...

To set options associated with all ’ep’ instances whose object instance identifiers derive
from a parent identifier PID, use the syntax

>> prob = coco_set(prob, ’PID.ep’, ...

To set options for all ’ep’ instances in a continuation problem, use the syntax

>> prob = coco_set(prob, ’ep’, ...

As explained in Recipes for Continuation, precedence is given to settings defined using the
most specific path identifier. See the output of the ep_settings utility for a list of supported
settings and their default or current values.

9.5 Toolbox output

By default, the bifurcation data cell array stored during continuation and returned by the
coco entry-point function (given a receiving variable) includes four columns with headers
’OID.x’, ’||OID.x||_2’, ’MAX(OID.x)’, and ’MIN(OID.x)’ with data given by the vector
of problem variables, the corresponding Euclidean norm, and the maximum and minimum
entries of this vector, respectively, and OID representing an object instance identifier (the
period is omitted when OID equals the empty string). In addition, if eigenvalues of the
Jacobian ∂xF (x, p) are computed during continuation, then these are included in a column
with header ’OID.eigs’. All continuation parameters are included in the bifurcation data
cell array by default, but printed to screen during continuation only if included in the list of
arguments to the coco entry-point function.

For general equilibrium points, the sol output argument of the ep_read_solution utility
contains

• the vector of problem variables (in the x field),

• the vector of problem parameters (in the p field),

31

• the vector of continuation variables (in the u field),

• the tangent vector to the corresponding curve segment (in the t field).

If eigenvalues of the Jacobian ∂xF (x, p) are computed during continuation, then these are
contained in the field ep_test.la. In the case of simultaneous continuation of arrays of
perturbations and their images under the Jacobian ∂xF (x, p), the field var.v contains the
array of perturbations.

For branch points (located by the atlas algorithm) the t0 field contains a singular vector
normal to t. For saddle-node bifurcation points, the field var.v contains the unit eigenvector
v of ∂xF (x, p) corresponding to the zero eigenvalue. For Hopf bifurcation points, the sol

output argument contains

• the square k(= ω2) of the Hopf frequency (in the hb.k field),

• a unit eigenvector of the squared Jacobian ∂xF (x, p) · ∂xF (x, p) corresponding to the
eigenvalue −k (in the first column of the var.v field).

The ep_plot_theme toolbox utility defines the default visualization theme for the ’ep’

toolbox. The command

>> thm = ep_plot_theme(’ep’)

assigns the default theme for visualization of the results of continuation of general equilibrium
points to the thm variable. Similarly, the commands

>> thm_SN = ep_plot_theme(’ep.SN’)
>> thm_HB = ep_plot_theme(’ep.HB’)

assign the default themes for continuation of saddle-node and hopf bifurcation points, re-
spectively, to the variables thm_SN and thm_HB. Notably, when visualizing the results of
continuation of general equilibria, the continuation parameter ’OID.ep.test.USTAB’ is used
to distinguish branches of stable and unstable equilibria, respectively. In this case, to include
markers identifying saddle-node bifurcations, Hopf bifurcations, or neutral saddles, the labels
’SN’, ’HB’, or ’NSA’ should be added to the special field of the problem-specific plotting
theme. Similarly, to include markers identifying Bogdanov-Takens bifurcation points during
continuation of Hopf bifurcations, the label ’BTP’ should be added to the special field of
the problem-specific plotting theme.

9.6 Developer’s interface

Continuation problems constructed with the ’ep’ toolbox constructors may be embedded in
larger continuation problems that contain additional continuation variables, zero functions,
and/or monitor functions. Each ’ep’ instance is associated with a toolbox instance identifier
obtained by prepending an object instance identifier to the string ’ep’.

The coco_get_func_data core utility may be used to extract the function dependency
index set (the ’uidx’ option) and the toolbox data structure (the ’data’ option) associated

32

with the basic equilibrium problem. As shown in the examples and described further in
the documentation of the ep_add interface function, the content of the ep_eqn field of the
toolbox data structure includes context-independent arrays of integer indices for the vector
of problem variables (x_idx) and problem parameters (p_idx), respectively. In the case of
simultaneous continuation of arrays of perturbations and their images under the Jacobian
∂xF (x, p), the ep_var field of the toolbox data structures includes context-independent ar-
rays of integer indices for the array of perturbations (v_idx) and their images (w_idx). In the
case of continuation of saddle-node bifurcations, the ep_sn field of the toolbox data struc-
ture includes context-independent arrays of integer indices for the vectors v (v_idx) and w
(w_idx). In the case of continuation of hopf bifurcations, the ep_hb field of the toolbox data
structure includes context-independent arrays of integer indices for the vectors v (v_idx), w
(w_idx), and k (k_idx), as well as the content of the vector n (nv).

The coco_get_adjt_data core utility may be used to extract the adjoint row (the ’afidx’
option) and column (the ’axidx’ option) index sets as well as the toolbox adjoint data
structure (the ’data’ option). The content of the ep_opt field of the adjoint data struc-
ture includes context-independent arrays of integer indices for the columns associated with
problem variables (x_idx) and problem parameters (p_idx), respectively.

The ’ep’ toolbox data structure contains several fields that are associated with the ’ode’
toolbox family. These include function handles to the vector field (fhan), to its Jacobians
(dfdxhan and dfdphan), and to functions evaluating the second derivatives with respect to
the state variables and problem parameters (dfdxdxhan, dfdxdphan, and dfdpdphan), a cell
array of string labels for the continuation parameters associated with problem parameters
(pnames), the state-space dimension (xdim), and the number of problem parameters (pdim).

The ’ep’ toolbox data structure contains a number of implementation-dependent internal
fields whose use may change in the future. Accessing such internal fields is deprecated.

33

