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Self-assembly of amphiphilic or dipolar molecules such as lipids, surfactants, and synthetic diblock copoly-
mers finds wide application to energy production, [Garay et al (2014)], energy harvesting, [Choi et al (2010)]
and biological cellular function [Friedman & Voeltz (2011)] and human disease, [Gluchowski et al (2017)].
The shorter members of the family of amphiphilic molecules include the phospholipid molecules that are the
building block of choice of biological membranes and the surfactants that lower the free energy of mixtures
by packing into the void spaces that form at the interfaces between incompatible fluids.
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states, such as end-caps and complex network structures, that
play a substantial role in experiments of dispersions of amphiphilic diblock polymers. We present a slight
variation of this random phase reduction that strengthens the role of nonlinearity and leads to the Multicom-
ponent Functionalized (McF) free energy, which contains the Functionalized Cahn-Hilliard (FCH) free energy
under a reduction to a scalar phase field function. The McF derivation differs from [Uneyama & Doi (2005a)]
and [Choksi and Ren (2003)] in two key ways. The random phase approximation generically yields a bilinear
approximation to the energy. [Uneyama & Doi (2005a)] use a slowly varying average phase approximation to
extrapolate from the bilinear model, replacing the the average molecular density with the spatially varying
density. In the McF derivation the average density is replaced with a long-range convolution of the density
which better represents a slowly varying average. The second distinction represents a difference in scaling
regime. [Choksi and Ren (2003)] obtain a singular limit by scaling the molecular chain length of the diblock
molecule to infinity. Commensurate with a short molecule assumption, the McF scaling takes the ratio of
the Kuhn length to domain size as a small parameter while keeping the chain length fixed. This results in a
homogeneous scaling of the differential operators with this small parameter.

We present a family of benchmark problems for the scalar FCH that show that the formation of defect
structures, corresponding to local minimizers, can arise from dynamic effects associated to the rate of absorp-
tion of dispersed molecules onto a bilayer interface. Slow rates of absorption lead to a regularized interfacial
lengthening regime that can be described rigorously. Simulations, supported by linear bifurcation analysis,
show that higher rates of absorption lead to formation of defects such as end-caps and loops observed exper-
imentally. We present an energy for a blend of phospholipid and cholesterol, which contains an additional
small parameter consistent with the McF derivation. The result is a singularly perturbed problem for the
cholesterol-loaded structure embedded within the singular scaling of the phospholipid bilayer. Exploiting the
semi-strong scaling of singular perturbation theory we show that the cholesterol sublayer robustly stabilizes
the membrane to defect-generating pearling perturbations.




Multicomponent Functionalized (McF) free energies

[Choksi and Ren (2003)] and [Uneyama & Doi (2005a)] exploit random phase approximations of self-
consistent mean field theory approaches to derive macroscopic models of free energy of di-block and ho-
mopolymer blends. Their approach recovers a bilinear form for the energy of mixtures of species {¢;}
whose densities ¢; = ¢, + ¢; o are small perturbations ¢; o = ¢; o(x) from the corresponding spatially av-
eraged value ¢,. On a fixed domain 2, subject to periodic boundary conditions one may introduce the
“Square-root Green’s Operator” G := (—A)~2, and write the energy as a bilinear form

F (¢0) = Aij (Gi0)(Gej0) + By + Xij | Pi004,0 + 0 'g|v¢i,0|2 dz. (1)
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Here A = (Ai;),B = (B;j),C = (C;) are material parameters that incorporate the diblock structure and
scale with the diblock ratios, x;; are related to Flory-Huggins interaction parameters, and d;; is the usual
Kronecker delta. [Uneyama & Doi (2005a)] extend this to a nonlinear model by viewing the average values
as slowly varying, making the replacement

& = ¢ = ¢; + bio,

and extrapolating the modified bilinear form into a fully nonlinear energy:

Fup(¢) = Z/Q [AijG\/EG\/@Jr Bi; {(1 —0i))\Gidj + 81 ln@} +
B

Xij®i¢j + 5ijg|v¢i|2} dx.
For the case of a single A-B type diblock copolymer both [Choksi and Ren (2003)] and [Uneyama & Doi (2005a)]
use their extrapolated energy to re-derive the well-known Ohta-Kawasaki model. In [Uneyama & Doi (2005b)]
this formulation was specified to model the energy of interaction of an amphiphilic diblock copolymer with a
solvent, and was used to recover a smooth bifurcation sequence similar to the experimental results depicted
in the bottom row of Figure?2 (left). This model was not able to recover the “morphological complexity”
seen in the top row (left-longer chains) and depicted in the center images.

Phase field models of amphiphilic blends predate the random phase approximation, originating with
[Teubner & Strey (1987)] who studied the small-angle x-ray scattering (SAXS) data of microemulsions of
oil, water, and surfactant. They proposed a bilinear form for a scalar phase function that is comparable to
the model }"[(JQI)). This model was extended in an ad-hoc manner to a nonlinear model similar to the FCH by
[Gompper & Schick (1990)]. This form can be approached from the bilinear form (1). The first step is to
rewrite the bilinear form in terms of the the local average v; := G¢; 0/¢;, and then extrapolate the bilinear

energy ]:1821% by replacing ¢, with the slowly varying average value
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This extrapolation yields the general multicomponent functionalized (McF) free energy
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where we have introduced ¢;; := /¢;¢;. For simplicity the coefficient of the highest-order differential term

is kept spatially constant. We rescale following [Choksi and Ren (2003), Appendix A] with the exception
that the chain length, N, is kept finite as is commensurate with a short chain limit, rather than sent to oo
as in their derivation of Ohta-Kawasaki. As a consequence all differential terms scale homogeneously with
€ < 1, the ratio of the Kuhn length to the domain size. Modulo some compatibility conditions the McF
energies can be written in the factored form

Fumer (V) = /Q % |52D2A¢ — F(q/,)|2 — P(v), (2)



where ¢ = (¢1,...,%,), D is a positive diagonal matrix that reflects differences in molecular lengths,
F:R"+— R" and P: R"” — R. We supplement this framework with incompressibility constraints ¢ = I(u)
where the map I : R? — R”, indicates the relation between the packing of molecules and the intrinsic
pressure.

Reduction to Functionalized Cahn-Hilliard

The simplest amphiphilic blend consists of an A-B diblock mixed with a solvent C'. We consider the McF
with ¢ = (¢ 4,95, %c). To reduce to a scalar model, we impose a two-constraint incompressibility

’wA:fA'lh wB:fBua wczl_ua

where fa + fg = 1 are the molecular weight fractions of the A and B monomers within the chain. Inserting
this reduction into the McF, our analytical results require that P is small, so that the energy is close to a
“perfect square”. This yields the functionalized Cahn-Hilliard energy

Freu(u) == /Q % (Au— W’(u))2 — P P(u)dz,

where W : R — R is an unequal depth double-well potential whose second derivative W tends to oo
as u — 0,1 and p = 1,2 characterizes the strength of the functionalization terms that break the perfect
square structure. Within the synthetic polymer community, “It has been established that the nanoparticle
morphology is a result of a reduction in free energy achieved via three main parameters: (i) stretching of
the hydrophobic core block, (ii) interfacial tension between the core and solvent, and (iii) repulsion between
corona strands. FEach of these components involves contributions from myriad variables in the polymer
structure and environment”, [Barnhill et al (2015)]. These effects can be incorporated via the reduction

1
P(u) = §n162|Vu|2 + W (u),

with the parameter 7; describing effects (ii) and 79 incorporating the aspect ratio of the surfactant molecules
which underlies effects (i) and (iii). To this list [Barnhill et al (2015)] add a kinetic parameter, the “unimer
exchange rate” governing the rate of insertion or expulsion of amphiphilic molecules between a micellular
structure and the bulk phase. Within the FCH this is governed by the value of the second derivative of the
double well at the pure solvent phase, W (0) — that controls the energy of dilute dispersions of surfactant
and determines the energetic reward for insertion of an amphiphilic molecule into a micellular structure.

Curve Lengthening and Defects in FCH Gradient Flows

Addressing the FCH energy, at leading order the codimensional structures are solutions of the global
minimization problem associated to the dominant form

e Au —W'(u) = O(e), (3)
while defects solve the local minimum problem
(A — W (W) (EAu — W'(u)) = e, (4)

in terms of a Lagrange multiplier A € R. Experimental results, [Jain and Bates, 2003], examine the relax-
ation of a dispersion of amphiphilic PEO-PB diblocks in solvent. Forming dispersions with hydrophobic chain
length Npg = 45 and Npg = 170, they found that the short hydrophobic chain molecules self-assembled
into ‘defect free’ states with various dominant co-dimensions depending upon the weight fraction wpgo of
the hydrophilic to the hydrophobic monomers within the diblock chain. However for the longer hydrophobic
chains they observed that bilayer structures were replaced defect heavy structures, whose appearance they
described as the onset of “morphological complexity.” For analytical and computational purposes we study
gradient flows of the FCH energy associated to a family of benchmark problems arising from initial data that
replaces the random dispersion of amphiphilic material with a fixed, slightly non-circular bilayer interface
perturbed by a small, spatially constant density of dispersed molecules. These benchmark problems illumi-
nate the rich interplay between codimensional structures and defects, in particular they show that the onset
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Figure 2: (left) Experimental morphology of Polyethylene oxide (PEO) - Polybutadiene (PB) amphiphilic diblock
as function of the PEO weight fraction, wpgro, (horizontal axis) for molecular weights of PB fixed at Npg = 45 and
170 (vertical axis). Morphological Complezity is observed for Npg = 170 but not for the shorter Npg = 45 chains.
(center) Experimental images from the morphological complexity regime showing network structures, end caps, and
Y -junction morphologies corresponding to the Cy phase of the bifurcation diagram, [Jain and Bates, 2003]. (right)
FCH benchmark simulations from perturbed bilayer plus dispersion of surfactant which are absorbed under gradient
flow. Increasing dispersion level leads to (top to bottom) buckling, pearling and bike-chain evolution that generates
endcaps and loops, and curve splitting that generates loops.

of morphological complexity can be attributed to the rate of absorption of surfactant materials from the
bulk dispersion. Analysis of linearization of the FCH energy at a bilayers structure shows two natural soft
modes: one associated to interfacial motion, called meander modes, and one associated to high-frequency
perturbations of the interfacial width, called pearling instabilities, [Kraitzman & Promislow (2018)]. Both
instabilities are very sensitive to the level of dispersed surfactant. Simulations of the FCH gradient flow
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starting from the benchmark initial data show that low levels of dispersed surfactant lead to a buckling motion
as the bilayer lengthens to absorb the dispersed surfactant. Increasing the level of dispersed surfactant leads
to a pearling bifurcation which then yields to a bike-chain motion of the resulting micelles. The embedded
pearls may protrude and produce end-caps that subsequently enlarge and may re-intersect with the bilayer
to form loops. Initial data with yet higher levels of dispersed surfactant can lead directly to curve splitting
and loop formation. These three outcomes are presented in Figure 2-(right).

For the benchmark problems, rigorous analysis of [Chen and Promislow (arXiv)] applied to the strong
functionalization, p = 1 in (5), establishes a finite dimensional reduction for the the curve lengthening
evolution for sufficiently low levels of dispersed surfactant. Using a large-dimensional center-stable manifold
reduction, it is shown that the evolution of a bilayer interface I' immersed in ) C R?, is well approximated
by the gradient flow of the sharp interface energy

Jr = ge_1|\1“|—'yo|2—&-z//<a2ds,
2 2 Jr

where a,v > 0 are constants, k is the curvature of T', |T'|(¢) is the length of the evolving bilayer interface
and 7 is an equilibrium curve length specified from the initial data via mass conservation. If the initial
curve length is shorter than the equilibrium value, |T'g| < 79, the curve lengthen increases through motion
against curvature subject to regularization by Willmore terms. In two space dimensions this flow can be
characterized in a more familiar PDE setting in terms of its impact on the curvature,

Ok =€ " (074 K?) (a(|F| —Y0)k + ev (6?/{ + ;K3>) .

The regularizing Willmore terms represent a singular perturbation that allows for well-posedness of the flow.
Rigorous [Kraitzman & Promislow (2018)] and formal analysis, [Christlieb et al (2019)], characterizes the



onset of pearling via a pearling stability index that incorporates the level of dispersed surfactant. This was
followed by work using spatial dynamics techniques to establish the existence of stable pearled structures, see
[Promislow & Wu (2015)] and [Promislow & Wu (2017)]. However the pearled morphology can be transient
as it is sensitive to the evolving level of dispersed surfactant. This situation is presented in the embedded
movie [LINK HERE] that presents a simulation of the FCH gradient flow for a dispersed surfactant level that
is just below the critical level required to generate a defect. The two graphs on the right-hand side present
the evolution of the pearling stability index and the value of the coefficient «(|I'| —70) whose sign drives the
transition from curve lengthening to curve shortening. The movie shows a rapid transition of the bilayer to
a pearled morphology accompanied by a sharp decrease in the pearling stability index. However the onset
of the pearled morphology inhibits the absorption of dispersed surfactant and the pearling stability index
is held near the pearling-neutral line from ¢ = 5 to ¢ = 20. During this time the pearls undergo a bicycle
chain motion in which adjacent pearls are dislocated in alternate directions — a sort of pearled meander.
This motion only slightly increases the amount of surfactant absorbed onto the pearled bilayer. At ¢t ~ 20
two new pearls are generated, allowing the curve to lengthen, lowering the pearling index into a stable value,
and the pearled bilayer relaxes back to an un-pearled bilayer form. The last micelle-type defect is, narrowly,
reabsorbed around ¢ = 35, at roughly the end of the curve-lengthening regime. Subsequent motion, not
shown, restores the interface to a larger circular shape.

The simulations suggest that it is the rate of absorption of the dispersed surfactant that is deterministic
in the formation of defects. This is partially justified by the analytical results. Indeed, the bilayer buckling
analysis show that a nearly-circular initial bilayer has a departure from circularity that depends exponentially
upon the initial level of dispersed surfactant — beyond a key threshold the growing curve will surely self-
intersect. Similarly the pearling stability index depends sensitively upon both the background level of
surfactant and the value of W (0) that controls the rate of absorption. These analytical results are consistent
within the experimental results presented in Figure2 (left). The longer chained molecules are considerably
more hydrophobic and encumber more volume per molecule [Jain and Bates (2004)]. This corresponds to
both a higher absorption rate and a higher displaced volume/molecule. Preliminary simulations of the FCH
gradient flow show that increasing W (0) for initial data with the same initial level of dispersed surfactant
triggers a chain of bifurcations similar to morphological complexity.

Singular Perturbations and Phospholipid-Cholesterol Models

The pearling resultant morphological complexity observed in syn- 3 o

thetic polymers is not observed in the phospholipid bilayers that . . ::der
comprise in vivo cell membranes. A potential mechanism for ~ | groups
the robust stability of the biological membranes can be gleaned 2

from the observation that all eukaryotic cells interdigitate choles- ¢ =5 z:ﬁtﬁwl
terol in a roughly 1-1 ratio with phospholipid molecules (non- - J-_ | regian
eukarotic cells often contain simpler glycolipids). Considering a 1F . ]

model for a phospholipid-cholesterol-solvent blend with variables ; sy

Y = (Y, Yr,Ye,s) denoting head and tail groups of the phospho- region

lipid, the cholesterol molecule approximated by a chain of a single
monomer, and solvent phase, we impose an incompressibility con-
straint that slaves v = I(uy, us) with u; denoting a unified phospho-
lipid head-tail and us the cholesterol density. This model exactly
satisfies the compatibility constraints required for reduction to the
factored form (2). Assuming an asymptotically small functionalization term P, the bilayer structures corre-
spond to homoclinic solutions of the reduced ODE:

F
proz (™) = 1(u, u2) | (©)
U2 Fy(u1,uz)
Additional assumptions on Florey-Huggins parameters corresponding to strongly amphiphilic phospholipid
and weakly hydrophilic cholesterol molecules, and a dominant volume fraction of solvent yields a system with
a singularly perturbed scaling within the matrix D =diag{1,}. Indeed the nonlinearity F' is of the form for

which Fj(u1,0) and F5(0,us) both support bilayer profiles in u; and ug and satisfy 9,,F1 > 0y, F». These
features fit hand-in-glove with the semi-strong scaling of singularly perturbed dynamical systems studied in

0
Figure 3: Interdigitation of choles-
terol molecule between two phospholipid
molecules



[Doelman & Veerman (2013)] and [Doelman & Veerman (2015)].

The linear nature of the random phase reduction
of the self-consistent mean field theory only provides
guidelines for the extrapolation to a more nonlinear
model. The semi-strong singular perturbation tool-
box allows one to identify a model that fits within
this framework and has the desired composition and
stability properties. Remarkably, these McF guide-
lines are consistent with a semi-strong singularly
perturbed structure with a vector field of the form

Flu) = (W’(uo - ;5f<u1>2u§n<u1>> -

U2 — f(Ul)U%

and the diagonal matrix D = diag{1,d} where § < 1
denotes the length ratio of the cholesterol to the
phospholipid molecule. Here f is a generic positive
function satisfying f(0) = 0 that scales the density
of cholesterol within the bilayer. A more central role
is played by the take-off curve 7T,, and its intersec-
tion with the unstable manifold of the vector field at
the origin. This affords both the construction of the
bilayer profile ® that is a homoclinic solution of the
coupled system (6) and a sharp quantification of the
eigenvalue structure of the associated linearization

L:=D?3? - V,F(®).

This information was extended to the multidimen-
sional problem for a bilayer embedded in R™ and
extrapolated to information on the McF lineariza-
tion L := L£'£ whose eigenvalues are precisely the
singular values of L, [Chen et al (arXiv)]. Indeed,
a sharp pearling stability condition, requiring only
that the scaled operator D~2L has no strictly pos-
itive real spectrum, can be linked to a very natural
geometric condition associated to the crossing di-
rection of the take-off curve and unstable manifold
of the origin.
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Figure 4: (left) The phospholipid cholesterol bilayer sys-
tem (6) with F' given in (7) has two fast-slow homoclinic
connections, corresponding to the two intersections of the
take-off curve T, with the unstable manifold W of the
origin of the slow system (u1).. = W’(u1). The leftmost
intersection, at u; = S., where T, crosses the unstable
manifold from above yields a robustly stable bilayer in-
terface. (right) A cross section of a bilayer membrane
with phospholipid (u1) on the outside and interdigitated
cholesterol (u2) in the core where the maximum density is
acheived. The maximum value of u; occurs at the take-off
intersection point. The amplitude of the fast component,
ug, equals 1/ f(S.), which is an adjustable parameter.

It is impressive that the semi-strong technology can provide stability information in this

higher-order/multi-dimensional setting. It is true synergy that the semi-strong technology can transform
the expectations of robust stability of a phospholipid-cholesterol bilayer into an in-painting of the nonlinear
structure that is missing from the random phase reduction while remaining within the guidelines it provides
for scaling and compatibility. This highlights the role that analysis can play in model development.
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