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Recently, there has been some interest in a collection of phenomena, discovered and rediscov-
ered several times since 1836, and known variously as the Talbot effect, fractalization, (quantum)
revivals, and dispersive quantization. As the prevalence of allied effects continues to surprise,
it is likely too early to attempt a clear mathematical definition, but it seems that they occur
in dispersive systems and are most obviously present with sufficiently rough data. In lieu of a
definition, this article aims to describe the phenomena and draw attention to some of the recent
results. The latter are characterized broadly to emphasize connections, with references to the
original articles for precise statements.

In section 1, we provide a brief reminder of the definition of a dispersive partial differential
equation. Talbot’s original experimental discovery of these effects is outlined in 2. Section 3
gives an elementary mathematical explanation for some of these effects in the simplest example.
The more recent mathematical results are surveyed in section 4 and section 5. We conclude with
a list of open problems.

1 Dispersive partial differential equations

A linear evolution partial differential equation is described as dispersive if its Fourier modes
travel unaltered but at different speeds. Consider, for example, the class of periodic initial
boundary value problems

[∂t + iω(−i∂x)]q(x, t) = 0, (x, t) ∈ (−π, π)× (0,∞),

q(x, 0) = q0(x) x ∈ [−π, π],

∂jxq(−π, t) = ∂jxq(π, t) t ∈ [0,∞), j ∈ {0, 1, . . . ,deg(ω)− 1},

with dispersion relation ω returning the frequency ω(k) as a function of the wave number k.
The Fourier modes, ei(kx−ω(k)t) for k ∈ Z, propogate at phase velocities ω(k)/k. Therefore,
assuming ω is monomial, the partial differential equation is dispersive when ω(k) = Akn for
some integer n > 2 and real constant A. The linear free space Schrödinger equation and the
linearized Korteweg-de Vries equation are both dispersive, with dispersion relations k2 and k3,
respectively. The heat equation has ω(k) = ik2 causing its Fourier modes to decay exponentially,
so it is dissipative instead of dispersive; the transport equation is not dispersive either, because
its Fourier modes all translate at the same speed.

2 Talbot’s discovery

The first discovery was experimental, due to William Henry Fox Talbot in 1836. In [17, sec-
tion 2], Talbot reported on experiments on diffraction of white light by a regular slit grating and
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observation via Fresnel lens. (The other sections of [17] reported on unrelated experiments.)
Talbot observed colored revivals of the slit pattern at various distances from the grating, the
distance varying with which colored component of the white light experienced revival at that
length. He was at pains to point out that this appearance is not an effect of the focal length
of the Fresnel lens; the pattern of coloured revivals repeated at greater distances. In a modern
mathematical formulation, Talbot was observing the superposition of solutions of linear free
space Schrödinger equations with dispersion coefficient A corresponding to frequencies of each
component of white light, “time” variable representing the distance from the grating, and a peri-
odic “initial” datum a narrow box approximation of the Dirac comb. For monochromatic light,
the revivals of the rough initial datum at fixed distances contrast with apparently smoother
patterns, sufficiently hidden from Talbot as to be invisible behind the rough revival of light at
a different frequency.

Talbot also described a two dimensional version with diffraction by a grating of small cir-
cles, regularly spaced on a rectangular grid. In vivid, breathless detail, Talbot noted a clear
multichromatic diffraction pattern even along a plane oblique to the grating, which may also be
oblique to the incident light:

“A great variety of very singular patterns were displayed, which can be compared
to nothing so well as to tissues woven with threads of various colors. It would
be impossible to describe these, any more than the ever-changing figures of the
kaleidoscope. They seem to vary ad infinitum, and in whatever position the plate is
placed, they appear always as distinct as if they were in the focus of the lens.”

This pattern of clearly visible revivals of rough data at certain times, and hidden smoother
images at other times, is now fully understood, but its appearance in more complicated systems
is still under study.

Although it may not always be the case that general mathematical descriptions of these
phenomena need be confined to rough data, experimental and numerical work has tended to
focus on step functions because those are the initial data that produce the most easily observable
manifestations. Rigorous analysis has followed suit, concentrating primarily on functions of
bounded variation, particularly those with finitely many discontinuities.

3 Mathematical explanation

Consider the periodic initial boundary value problem for the linear Schrödinger equation, ω(k) =
k2, with initial datum the narrow box function 1

2εχ[−ε,ε] with 0 < ε � π. Following the usual
separation of variables procedure and expanding the initial datum as a complex Fourier series,

q0(x) =
1

2π
+

∑
k∈Z\{0}

sin(kε)eikx

kε2π
,

one arrives at solution

q(x, t) =
1

2π
+

∑
k∈Z\{0}

sin(kε)ei(kx−k
2t)

kε2π
.

Plots of the solution at various times produce curves that appear to be continuous, but not
differentiable, as was eventually confirmed (see below), as shown in figure 1. But when the
solution is plotted at times rational multiples of 2π (henceforth, rational times), a very different
pattern emerges, as displayed in figure 2. Apparently, this is a linear superposition of several
copies of the initial datum, shifted regularly by a fraction of the period.
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Figure 1: The solution at various times.
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Figure 2: The solution at various times commensurate with π.
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If t = 2π, then ei(kx−k
2t) = ei(kx−k

22π) = eikx and the solution reduces to exactly the initial
datum, so exact revivals of the initial datum and time periodicity of the solution are not wildly
surprising, but revivals at other rational times t = 2π pq , where p

q is a rational in reduced form,
warrant further explanation.

Consider the Fourier series for the shifted initial datum

q0(x− r) =
1

2π
+

∑
k∈Z\{0}

sin(kε)ei(kx−kr)

kε2π
,

in which we assume that q0 is itself a periodic function. This formula is remarkably similar to
the solution formula, except that the factor e−ik

22πp/q in each term has been replaced by e−ikr.
Following the suggestion of the numerical experiments, we take a linear combination of q of
these copies of the initial datum, each shifted by 2π/q more than the last. We find

q−1∑
j=0

Ajq0

(
x− jp

q
2π

)
=

q−1∑
j=0

Aj
2π

+
∑

k∈Z\{0}

sin(kε)

kε2π
eikx

q−1∑
j=0

Aje
−ik jp

q
2π
.

For this to be another representation of q(x, t), it must hold that the Aj sum to 1 and, for all
k ∈ Z \ {0},

e
−ik22π p

q =

q−1∑
j=0

Aje
−ik jp

q
2π
.

At first, this appears to be a grossly overspecified linear system, with only q degrees of freedom,
but countably infinitely many equations. However, representing k = uq + v for integer u and
v ∈ {0, 1, . . . , q − 1}, we find

e
−ik22π p

q = e
−2πip

(
u2q+2uv+ v2

q

)
= e
−iv22π p

q ,

and similarly for the linear combination on the right, so the system is equivalent to

e
−iv22π p

q =

q−1∑
j=0

Aje
−iv jp

q
2π
, v ∈ {0, 1, . . . , q − 1};

note that the v = 0 case reduces to the Aj having unit sum. This system is represented by a
Vandermonde matrix whose rows are each generated by a different root of unity, so it is full
rank. Therefore, by solving the system, we may identify coefficients Aj for which

q

(
x,

2πp

q

)
=

q−1∑
j=0

Ajq0

(
x− jp

q
2π

)
; (1)

the solution at time 2πp/q is a linear combination of q regularly spaced shifts of the initial
datum.

The above calculation does not explain the smoothing at irrational times, but rational time
discontinuities for discontinuous data, and Talbot’s revivals at certain distances from the grating
(times) are thereby explained. Because Talbot worked with white light, he saw the superposition
of solutions of the linear Schrödinger equation with dispersion relations scaled by a range of
different positive constants corresponding to the frequencies of colors of light. For each color, t
must be scaled by this coefficient (and the period of the grating), leading to revivals at different
distances for different colors. Talbot did not see a more complex revival pattern for one colour
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at distances far from any distance with small q because at such distances there would always be
another color for which the distance was closer to a smaller q, producing a sharper revival for
the latter color, hiding the more complex but less intense revival of the former.

Taking the limit as ε → 0+, one obtains the fundamental solution of the initial boundary
value problem, so it immediately follows that equation (1) is valid for any initial datum that is
a test function for δ.

4 Smoothing of rough data at irrational times

Talbot’s experiments, “communicated in the hope that they may prove interesting to the culti-
vators of optical science” were given some theoretical attention by Rayleigh and others in the
physics community, but mathematicians paid little heed before 1992, when Oskolkov presented
the first rigorous results. In [15], periodic initial boundary value problems were studied, for
linear partial differential equations with polynomial dispersion relations having integer coeffi-
cients, using the partial Fourier series of the sawtooth function, described as discrete Hilbert
transforms, and collapsing to Gauss sums at rational times. Oskolkov proved that at irrational
times, the solution is continuous provided the initial datum is of bounded variation. This irra-
tional time smoothing is contrasted with Oskolkov’s rational time result that discontinuities in
the initial data produce discontinuities in the solution.

In 1996, Berry and Klein interpreted Talbot’s experiment in geometric optics, studying
solution curves along various lines [2]. They found the same Fourier series as arise in the
zero potential linear Schrödinger equation, reducing to Gauss sums in formulae for the solution
at rational times. For constant x, constant t (Talbot’s first experiment), and certain (x, t)
diagonals (Talbot’s oblique experiments), they found different fractal (Minkowski) dimensions
of the solution curves. Their results were proved rigorously in [10, 16]. In [1], Berry extended
the work of [2] to multiple dimensions, but only the separable case of rectangular periodicity
appearing in Talbot’s experiments. Berry also conjectured that nonzero potential and nonlinear
perturbations of the linear Schrödinger equation would preserve the fractal dimension results.

Erdoğan, Tzirakis, and their collaborators took up the challenge of proving the nonlineariza-
tion part of Berry’s conjecture, and extending it to the class of integer polynomial dispersive
equations studied by Oskolkov. These works also provide an analytic explanation for the numer-
ical studies of fractalization by Olver and collaborators, described below. In 2013, Erdoğan and
Tzirakis considered the cubic nonlinear Schrödinger equation on a periodic domain with initial
data of bounded variation [9]. To address Berry’s conjecture, they proved that the effect of
the nonlinear perturbation is smoother than the purely linear evolution, a nonlinear smoothing
result analagous to their result for the Korteweg-de Vries equation [8]. With this tool, they were
able to quantify the irrational time fractalization in terms of bounds on the Minkowski dimen-
sion. Because the equation is nonlinear, the rational time result is not characterized via revivals,
but as lower regularity, at most countably many discontinuities, than at irrational times.

In 2015, togther with Chousionis, Erdoğan and Tzirakis obtained more Minkowski dimension
fractalization results, this time for dispersive linear partial differential equations with monomial
dispersion relation [5]. They also obtained similar results on the real and imaginary parts of the
solution separately. All these Minkowski dimension results give both upper and lower bounds
on the Minkowski dimension, provided the initial datum is of bounded variation, but is irregular
enough, quantified in a Sobolev sense. Erdoğan and Shakan studied the nonlinear Schrödinger
equation, the Korteweg-de Vries equation and their linearizations on (x, t) diagonals [7]. They
obtained Minkowski dimension bounds first for the linearizations, then nonlinearized using non-
linear smoothing results [9, 8], tightening the Minkowski dimension bounds established in [5].
The introduction of [7] also provides an excellent and rather complete survey of irrational time
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smoothing and fractalization results.
The vortex filament equation models dynamics of a 1-dimensional vortex in a 3-dimensional

homogenous incompressible inviscid fluid, and reduces to the cubic nonlinear Schrödinger equa-
tion under Hasimoto’s transformation. The initial datum for the vortex filament equation is the
initial shape of the vortex filament, and polygonal initial data interested de la Hoz and Vega [6].
Hasimoto’s transformation causes a reduction by 2 in Sobolev regularity of initial data, so the
corresponding nonlinear Schrödinger problem has finite linear combinations of delta functions
for its initial data. Some numerical evidence suggesting fractalization at irrational times is pre-
sented by de la Hoz and Vega. Chousionis, Erdoğan and Tzirakis were unable to prove the
numerical observations of [6] as the nonlinear Schrödinger equation is illposed for distributional
data, but they obtained a fractalization result on the vortex filament equation for smoother
data.

5 Revivals at rational times

While preparing exercises for his textbook [12], Olver rediscovered the revival phenomenon for
the linearized KdV equation, in which ω(k) = k3. Presenting this result with a third order
version of the above argument [11], Olver also showed how to generalize the revivals argument
to dispersive partial differential equations with dispersion relation any polynomial with integer
coefficients (multiplied by a common real number). He also gave a good survey of many of the
works neglected here and concluded with some open problems.

Olver, Sheils and Smith explored revivals for the zero potential linear Schrödinger equation
with more complicated pseudoperiodic boundary conditions [14]. Following numerical experi-
ments, we were able to show that revivals do not require periodicity or even conservation of
energy to occur, although the simple revival formula (1) is replaced with a more complicated
version including also reflections of the initial datum. For more general two point boundary con-
ditions, other revival type phenomena are observed numerically, but not studied analytically.

Chen and Olver used numerical evidence to classify periodic dispersive wave equations with
nonpolynomial dispersion relations, according to large wave number dynamics [3]. They identi-
fied some kind of revivals and fractalization for linearizations of Benjamin-Ono, Boussinesq and
Benjamin-Bona-Mahoney, among others. The rational time “revivals” are not exactly linear
combinations of shifts of the initial data, but appear to be remarkably simple sums of some-
thing for small q. What that thing might be is not explored numerically or analytically. Work in
preparation by Olver, Pelloni and Smith begins to explore this question, providing analytic char-
acterization of the rational time revivals for some linear dispersive equations with nonpolynomial
dispersion relations.

Dispersive Lamb systems, in which the inhomogeneity is moved from the initial datum
to an oscillating point mass, model transverse disturbances in a string or, depending upon
the dispersion relation, another medium. With periodic boundary conditions, the string is
understood to be a loop. In contrast to the results of [3], the numerical studies of Lamb systems
by Olver and Sheils concluded that fractalization requires asymptotically sublinear growth of
the dispersion relation [13]. There is no explicitly stated revivals result, but linearity means that
revivals results similar to [3] would apply if an inhomogeneous initial condition were applied.
Erdogan and Shakan [7] provide some analytic discussion of the breakdown of revival phenomena
for dispersion relations that are not integer coefficient polynomials, as observed in [3, 13], albeit
for the fractional Schrödinger equation which was not explicitly studied in either of those works.

Chen and Olver also studied weakly nonlinear systems numerically [3], and continued that
work in [4]. In particular, they present numerical evidence for “revivals” and fractalization of
integrable and nonintegrable nonlinear Schrödinger and Korteweg-de Vries equations. Perhaps
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the strongest nonlinear revival result appears in the work of de la Hoz and Vega for the vortex
filament equation. They were able to establish that the rational time solution is polygonal if
the initial datum is polygonal.

6 Some open problems

The following is by no means an exhaustive list, but offers a few questions the author considers
interesting. Some of these problems are intentionally left ill defined, suggesting ideas for further
study, rather specific conjectures.

1. From [15], we understand that, as a sequence of rational time solutions approaches an
irrational time limit, the jump discontinuities smooth out to give a limit function that
is continuous. But precisely how that limit occurs, the possible heights of the jumps at
rational times with large denominator is not fully understood.

2. Precise fractal dimensions for solutions of nonlinear perturbations of dispersive partial
differential equations have not been established, but the nonlinear smoothing results of
Erdoğan and Tzirakis provide some good evidence for the nonlinearization part of Berry’s
conjecture.

3. Fractalization and irrational time smoothing are reasonably clearly defined, even if the
precise fractal dimension remains elusive in general and only bounded in many settings.
In contrast, at rational times, there is a huge gap between the generally applicable “less
smoothing” results of [15, 9] and the proofs of genuine revivals demonstrated above for the
periodic zero potential linear Schrödinger and presented in [11, 14] other relatively simple
circumstances. To fill this gap requires a good definition capturing the more general
concept of revival that appears in the numerical studies of [3, 14] and elsewhere.

4. There is significant difficulty in extending results such as [14] to other equations, even
with monomial dispersion relation. This arises from the fact that, except if the boundary
conditions are periodic, the eigenvalues are not powers of integers. Similar problems occur
in a general analytic treatment of the revivals observed numerically in [3]. Analytic results
would certainly require the more general definiton of revival sought above, and it appears
that a notion of convolution for generalized Fourier series, such as those arising from the
Fokas transform method, would be valuable here.

5. Berry conjectured that the perturbation of a linear dispersive partial differential equation
by a smooth potential would preserve fractalization. This author’s unpublished numerical
studies suggest that revivals are also, in some sense, preserved by a smooth potential
perturbation. But this has not been systematically studied.
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