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MatContM is available at http://sourceforge.net/projects/matcont/files/matcontm/.
This tutorial is tested on Matlab R2017b with matcontm5p4. In this tutorial we compute Lya-
punov exponents for three different examples.

We start with the planar Hénon map. It is one of the most studied maps with a chaotic
attractor. Through the geometric construction of Smale’s horseshoe of stretching and folding
back, this example exhibits chaotic dynamics. Next we consider the well-known logistic map as it
has the classical route to chaos via successive period-doubling bifurcations. Finally, we look at an
economic model for asset prices, as we can monitor some bifurcations of invariant curves. While
Lyapunov exponents are useful indicators, we should be careful in their interpretation. While
a positive largest exponent suggests chaos, it does not substitute a proof of chaotic dynamics.
Similary a zero Lyapunov exponent suggests an invariant curve but the numerical computation
may not converge to zero quickly. So this has to be interpreted with care.

1 Example 1; Hénon Map

For this example we use the Generalized Henon Map created before, tutorial M-III, using
R = S = 0. We will compute the Lyapunov exponent for a single set of parameter values. We will
explain how various options in the algorithm affect speed and accuracy.

1.1 Preparation and Input

Load the map via System|Systembrowser. Set the Point type Main|Type|Point and select
the computation of Starter|Initializer|Lyapunov Exponents QR-method. In the Starter
window we set x = 0.2, y = 0.3 and a = 1.4 and b = −.3. Also in the Starter window, we
choose settings Lyapunov steps=100000, normsteps=10, report every x normalizations=2000. Now
press Compute|Forward. The Output window appears where every 20000 (=10*2000) steps the
intermediate result is shown. After 2.8 seconds the computation was succesfully completed.

1.2 Results

In the workspace we now find a new variable ”lyapunovExponents”, an array with two numbers.
These are the computed Lyapunox exponents and we have L1 = .4205 and L2 = −1.6245. If we
increase the number of steps, our estimate will eventually converge, independent of the initial point.
The first iterates may still just be transients though before they reach the attractor. Therefore,
it may be advantageous to start the computation only after some number of transient steps such
that only the expansion/contraction near the attractor is sampled.

In Figure 1(right) we have plotted the ongoing estimates for the Lyapunov exponents. One may
observe the fluctyations which are still visible towards high step numbers. It is clear that a more
accurate result requires many steps. As a sort of error we take the difference of the minimum
and maximum of the ongoing estimates during the second half of the computation. Then we
get L1 = 0.420 ± .002 and L2 = −1.625 ± .002. There is a clear trade-off between speed and
accuracy. Setting the number of Lyapunov steps=1e7 (= 107), we find L1 = 0.4190 ± .0002 and
L2 = −1.6230± .0002.

The algorithm determines the expansion/contraction in every direction. If the Lyapunov vec-
tors become completely aligned, then the algorithm the most contractive direction become less
reliable. Therefore the vectors need to be orthonormalized. This is computationally expensive
and so this is done not at every step. To avoid numerical overflow, however, the number of steps
to orthonormalization cannot be set too high. In this example, normsteps=20 would be too high
as exp(L1 − L2)20 ≈ 6e+ 17. After 20 steps, the second Lyapunov vector will be numerically the
same as the first and any numerical result would be erratic.
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Figure 1: Left: Phase plot of the Hénon attractor. Right: The ongoing estimates of the two
Lyapunov exponents shown separately as the orders of magnitude differ.

2 Example 2; Logistic Map

For the logistic map we want to show how the exponents can be computed for a range of parameter
values. That is, as the attractor changes we can monitor how the exponents change.

2.1 Preparation and input

The logistic map is given by
F1 : x 7→ ax(1− x).

We create a new system with model name logistic with coordinate x and parameter a, see Figure
2 (left). We set x = 0.1 as initial condition as otherwise we stay in the origin forever. For the

Figure 2: Left: The system input for the logistic map. Right: The settings for the computation
with active parameter a (button ticked). The array for the parameter values is automatically
expanded.

parameters we choose a concatenated array of values to monitor how the single exponent changes
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as the parameter a varies. We take non-equidistant steps to speed up the computation. We set
a = [1 : .05 : 2.99, 3 : .005 : 4], see Figure 2 (left), and set a as an active parameter by clicking
the button. Next press Compute|Forward. This takes a while, about 1-2 minutes, and then
the results are written to the workspace into a structure lyapunovExponents with two fields, the
parameter and the exponents. Finally, we plot our results as follows.

figure;
a=lyapunovExponents.a;
plot(a,lyapunovExponents.exponents,a,0*a);
xlabel('a');ylabel('\lambda')

2.2 Results

If all is well, you now have Figure 3(left). We have also plotted another familiar graph for this
map, which is the coordinate x found by simply iterating the map, see Figure 3(right). Until
a = 1, the origin x = 0 is the only fixed point and all orbits converge to it. At a = 1 we
encounter a branching point where a positive fixed point x∗ = (a − 1)/a appears. At a = 2, the
multiplier of the fixed point x∗ equals 0. This is visible as the Lyapunov exponent has a vertical
asymptote at a = 2. This phenomenon is referred to as superstability in work on “shrimps”
(Vitolo, Glendinning, Gallas, 2011). At a = 3, the first period-doubling occurs which is visible
as the Lyapunov exponent increases to zero, and next decreases again. The increase may be
interpreted that in that corresponding direction the attractor becomes less attracting until it loses
stability. The next period-doubling occurs at a = 1 +

√
6 ≈ 3.45 where the exponent increases to

zero and decreases again. This repeats until a ≈ 3.57 where chaos sets in. Here we have positive
Lyapunov exponents alternating with regions where we have stable cycles.
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Figure 3: Left: the Lyapunov exponent as a function of the parameter a. Right: The set of
x-values visited by the attractor.

3 Example 3; Resonances and Quasi-Periodic bifurcations

In this example we consider the dynamics of a model of volatility in asset prices, see Gaunersdorfer,
Hommes and Wagener 2008, with more details in the working paper . In memoryless form and
with reduced parameter space the model may be written as

F := (x1, x2, x3, x4) 7→ (1− n(x))vx1 + n(x)(x1 + g(x1 − x2)), x1, x2, x3) ,

where

n(x) =
e−x2

1e−bu2

e−bu1 + e−bu2
,
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with
u1 = (x1 − vx3)2 and u1 = (x1 − x3 − g(x3 − x4))2.

The origin is a fixed point of the model and has a Neimark-Sacker bifurcation for g = 2R. For v ≈
0.45 the Neimark-Sacker bifurcation is degenerate. Here a quasi-periodic saddle-node bifurcation
leading to a stable large “outer” invariant curve. We focus on the computation and explaining
the computational results and do not interpret the dynamics for the application. The idea here
is to follow the invariant curve as we change a parameter. We encounter resonances and a quasi-
periodic saddle-node bifurcation, where the invariant curve terminates to exist. We want to show
how the Lyapunov exponents may be classified to demarcate bifurcations that are otherwise hard
to find.

3.1 Preparation and Input

We specify the system ‘volatility’ with coordinates x1, x2, x3, x4 and parameters g, v,R, b as in Fig-
ure 4(left). Next we select Main|Type|Initial Point|Point and Main|Type|Curve|Compute
Lyapunov Exponents (QR....). In the Starter Window We set the initial condition x1 =
3, x2 = 3, x3 = 1, x4 = 1 and parameters g = 2.0, v = .8, R = 1.01, b = 8. With these settings
we start in the bistable region on the large invariant curve. Next we set g as Active Parameter,
normsteps=5, lyapunov steps=1e6 and g = 2 : −.0005 : 1.7, see Figure 4(right). Next press
Compute|Forward. This may take a while.

Figure 4: Left: The system input for the map. Right: The settings for the computation.

3.2 Results

Using the same plot commands as for the logistic map, but now with g instead of a, we obtain
Figure 5(bottom). As λ3,4 have a different order of magnitude we also show a plot with the range
restricted to λ1,2. As we decrease from g = 2.0 to g ≈ gc := 1.72633, we see that λ1 ≈ 0 most
often. This indicates an invariant curve. We could use a threshold |λ1| < 10−4 for classification
in this case, while all other exponents are more negative here. When a resonance is encountered,
the dynamics on the invariant curve reduces to a cycle with a high period. In the figure we see
resonances of period 17, 18, 19 and 20. The stability of the cycles inside the resonance tongues
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can be observed by all four exponents being negative. As we decrease g further, there is a critical
value gc where we see that λ2 comes closer and closer to zero. Here the invariant curve exhibits
a quasi-periodic saddle-node bifurcation. Decreasing g further, we observe a sudden drop in the
exponents. As the invariant curve is lost as attractor, the orbit now collapses to the origin. The
origin has two zero multipliers and a complex pair within the unit circle, and hence only two
Lyapunov exponents are well-defined as the others are −∞ (and hence not drawn). The sudden
change can be monitored to find a more precise bifurcation value. Summarizing, this example
shows how Lyapunov exponents may hint at quasi-periodic bifurcations. A stronger statement
requires a more rigorous treatment involving the computation of the normal behaviour of the
invariant curve.
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Figure 5: Evolution of the Lyapunov exponents as g is decreased from 2.0 to 1.7. Bottom figure
shows all 4 exponents, while top zooms in on the two exponents close to zero.
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